首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A comparison of a series of extended molecular dynamics (MD) simulations of bacteriophage T4 lysozyme in solvent with X-ray data is presented. Essential dynamics analyses were used to derive collective fluctuations from both the simulated trajectories and a distribution of crystallographic conformations. In both cases the main collective fluctuations describe domain motions. The protein consists of an N- and C-terminal domain connected by a long helix. The analysis of the distribution of crystallographic conformations reveals that the N-terminal helix rotates together with either of these two domains. The main domain fluctuation describes a closure mode of the two domains in which the N-terminal helix rotates concertedly with the C-terminal domain, while the domain fluctuation with second largest amplitude corresponds to a twisting mode of the two domains, with the N-terminal helix rotating concertedly with the N-terminal domain. For the closure mode, the difference in hinge-bending angle between the most open and most closed X-ray structure along this mode is 49 degrees. In the MD simulation that shows the largest fluctuation along this mode, a rotation of 45 degrees was observed. Although the twisting mode has much less freedom than the closure mode in the distribution of crystallographic conformations, experimental results suggest that it might be functionally important. Interestingly, the twisting mode is sampled more extensively in all MD simulations than it is in the distribution of X-ray conformations. Proteins 31:116–127, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
4.
Colombo G  Meli M  De Simone A 《Proteins》2008,72(3):863-872
It is a common belief that some residues of a protein are more important than others. In some cases, point mutations of some residues make butterfly effect on the protein structure and function, but in other cases they do not. In addition, the residues important for the protein function tend to be not only conserved but also coevolved with other interacting residues in a protein. Motivated by these observations, the authors propose that there is a network composed of the residues, the residue-residue coevolution network (RRCN), where nodes are residues and links are set when the coevolutionary interaction strengths between residues are sufficiently large. The authors build the RRCN for the 44 diverse protein families. The interaction strengths are calculated by using McBASC algorithm. After constructing the RRCN, the authors identify residues that have high degree of connectivity (hub nodes), and residues that play a central role in network flow of information (C(I) nodes). The authors show that these residues are likely to be functionally important residues. Moreover, the C(I) nodes appear to be more relevant to the function than the hub nodes. Unlike other similar methods, the method described in this study is solely based on sequences. Therefore, the method can be applied to the function annotation of a wider range of proteins.  相似文献   

5.
  1. Download : Download high-res image (282KB)
  2. Download : Download full-size image
  相似文献   

6.
Obtustatin and Lebestatin are lysine‐threonine‐serine (KTS)‐disintegrins, which are a family of low molecular weight polypeptides present in many viperidae venoms and are potent and specific inhibitors of collagen‐binding integrins. The integrin binding loop, harboring the 21KTS23 motif, and the C‐terminal tail are known to be responsible for the selective binding to the α1β1 integrin. Despite a very high sequence homology (only two mutations are present in Lebestatin relative to Obtustatin, namely R24L and S38L), Lebestatin exhibits a higher inhibitory effect than Obtustatin on cell adhesion and cell migration to collagens I and IV. Here we show, by means of molecular dynamics simulations of the two polypeptides in aqueous solution, that Lebestatin possesses a higher flexibility of the C‐terminal tail and a greater solvent accessibility of the integrin binding loop than Obtustatin. It may be hypothesized that these properties may contribute to the higher binding‐affinity of Lebestatin to its biological partner. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
Mammalian gastric lipases are stable and active under acidic conditions and also in the duodenal lumen. There has been considerable interest in acid stable lipases owing to their potential application in the treatment of pancreatic exocrine insufficiency. In order to gain insights into the domain movements of these enzymes, molecular dynamics simulations of human gastric lipase was performed at an acidic pH and under neutral conditions. For comparative studies, simulation of dog gastric lipase was also performed at an acidic pH. Analyses show, that in addition to the lid region, there is another region of high mobility in these lipases. The potential role of this novel region is discussed.  相似文献   

8.
Beta‐secretase 1 (BACE‐1) is an aspartyl protease implicated in the overproduction of β‐amyloid fibrils responsible for Alzheimer disease. The process of β‐amyloid genesis is known to be pH dependent, with an activity peak between solution pH of 3.5 and 5.5. We have studied the pH‐dependent dynamics of BACE‐1 to better understand the pH dependent mechanism. We have implemented support for graphics processor unit (GPU) accelerated constant pH molecular dynamics within the AMBER molecular dynamics software package and employed this to determine the relative population of different aspartyl dyad protonation states in the pH range of greatest β‐amyloid production, followed by conventional molecular dynamics to explore the differences among the various aspartyl dyad protonation states. We observed a difference in dynamics between double‐protonated, mono‐protonated, and double‐deprotonated states over the known pH range of higher activity. These differences include Tyr 71‐aspartyl dyad proximity and active water lifetime. This work indicates that Tyr 71 stabilizes catalytic water in the aspartyl dyad active site, enabling BACE‐1 activity.  相似文献   

9.
Prion diseases are invariably fatal and highly infectious neurodegenerative diseases that affect a wide variety of mammalian species such as sheep and goats, cattle, deer and elk, and humans. But for rabbits, studies have shown that they have a low susceptibility to be infected by prion diseases. This paper does molecular dynamics (MD) studies of rabbit NMR structures (of the wild type and its two mutants of two surface residues), in order to understand the specific mechanism of rabbit prion proteins (RaPrPC). Protein surface electrostatic charge distributions are specially focused to analyze the MD trajectories. This paper can conclude that surface electrostatic charge distributions indeed contribute to the structural stability of wild-type RaPrPC; this may be useful for the medicinal treatment of prion diseases.  相似文献   

10.
11.
《Epigenetics》2013,8(12):1604-1612
We report a series of molecular dynamics (MD) simulations of up to a microsecond combined simulation time designed to probe epigenetically modified DNA sequences. More specifically, by monitoring the effects of methylation and hydroxymethylation of cytosine in different DNA sequences, we show, for the first time, that DNA epigenetic modifications change the molecule's dynamical landscape, increasing the propensity of DNA toward different values of twist and/or roll/tilt angles (in relation to the unmodified DNA) at the modification sites. Moreover, both the extent and position of different modifications have significant effects on the amount of structural variation observed. We propose that these conformational differences, which are dependent on the sequence environment, can provide specificity for protein binding.  相似文献   

12.
We report a series of molecular dynamics (MD) simulations of up to a microsecond combined simulation time designed to probe epigenetically modified DNA sequences. More specifically, by monitoring the effects of methylation and hydroxymethylation of cytosine in different DNA sequences, we show, for the first time, that DNA epigenetic modifications change the molecule''s dynamical landscape, increasing the propensity of DNA toward different values of twist and/or roll/tilt angles (in relation to the unmodified DNA) at the modification sites. Moreover, both the extent and position of different modifications have significant effects on the amount of structural variation observed. We propose that these conformational differences, which are dependent on the sequence environment, can provide specificity for protein binding.  相似文献   

13.
Alanine racemase (AlaR) is a bacterial enzyme that catalyzes the interconversion of L- and D-alanine, which is an essential constituent of the peptidoglycan layer of the bacterial cell wall and requires pyridoxal 5'-phosphate (PLP) as a cofactor. The enzyme is universal to bacteria, including mycobacteria, making it an attractive target for drug design. To investigate the effects of flexibility on the binding modes of the substrate and an inhibitor and to analyze how the active site is affected by the presence of the substrate versus inhibitor, a molecular dynamics simulation on the full AlaR dimer from Bacillus stearothermophilus (pdb code: 1SFT) with a D-alanine molecule in one active site and the noncovalent inhibitor, propionate, in the second site has been carried out. Within the time scale of the simulation, we show that the active site becomes more stabilized in the presence of substrate versus inhibitor. The results of this simulation are in agreement with the proposed mechanism of alanine racemase reaction in which the substrate carboxyl group directly participates in the catalysis by acting cooperatively with Tyr 265' and Lys 39. A structural water molecule in contact with both substrate and inhibitor (i.e., in both active sites) and bridging residues in both active sites was identified. It shows a remarkably low mobility and does not exchange with bulk water. This water molecule can be taken into account for the design of specific AlaR inhibitors by either utilizing it as a bridging group or displacing it with an inhibitor atom. The results presented here provide insights into the dynamics of the alanine racemase in the presence of substrate/inhibitor, which will be used for the rational design of novel inhibitors.  相似文献   

14.
The understanding of protein dynamics is one of the major goals of structural biology. A direct link between protein dynamics and function has been provided by x-ray studies performed on ribonuclease A (RNase A) (B. F. Rasmussen et al., Nature, 1992, Vol. 357, pp. 423-424; L. Vitagliano et al., Proteins: Structure, Function, and Genetics, 2002, Vol. 46, pp. 97-104). Here we report a 3 ns molecular dynamics simulation of RNase A in water aimed at characterizing the dynamical behavior of the enzyme. The analysis of local and global motions provides interesting insight on the dynamics/function relationship of RNase A. In agreement with previous crystallographic reports, the present study confirms that the RNase A active site is constituted by rigid (His12, Asn44, Thr45) and flexible (Lys41, Asp83, His119, Asp121) residues. The analysis of the global motions, performed using essential dynamics, shows that the two beta-sheet regions of RNase A move coherently in opposite directions, thus modifying solvent accessibility of the active site, and that the mixed alpha/3(10)-helix (residues 50-60) behaves as a mechanical hinge during the breathing motion of the protein. These data demonstrate that this motion, essential for RNase A substrate binding and release, is an intrinsic dynamical property of the ligand-free enzyme.  相似文献   

15.
Streptomycin was the first antibiotic used for the treatment of tuberculosis by inhibiting translational proof reading. Point mutation in gidB gene encoding S-adenosyl methionine (SAM)-dependent 7-methylguanosine (m7G) methyltransferase required for methylation of 16S rRNA confers streptomycin resistance. As there was no structural substantiation experimentally, gidB protein model was built by threading algorithm. In this work, molecular dynamics (MD) simulations coupled with binding free energy calculations were performed to outline the mechanism underlying high-level streptomycin resistance associated with three novel missense mutants including S70R, T146M, and R187M. Results from dynamics analyses suggested that the structure distortion in the binding pocket of gidB mutants modulate SAM binding affinity. At the structural level, these conformational changes bring substantial decrease in the number of residues involved in hydrogen bonding and dramatically reduce thermodynamic stability of mutant gidB–SAM complexes. The outcome of comparative analysis of the MD simulation trajectories revealed lower conformational stability associated with higher flexibility in mutants relative to the wild-type, turns to be major factor driving the emergence of drug resistance toward antibiotic. This study will pave way toward design and development of resistant defiant gidB inhibitors as potent anti-TB agents.  相似文献   

16.
Because of its unusual spectroscopic properties, green fluorescent protein (GFP) has become a useful tool in molecular genetics, biochemistry and cell biology. Here, we computationally characterize the behavior of two GFP constructs, designed as bioprobes for enzymatic triggering using intramolecular fluorescence resonance energy transfer (FRET). These constructs differ in the location of an intramolecular FRET partner, an attached chemical chromophore (either near an N-terminal or C-terminal site). We apply the temperature replica exchange molecular dynamics method to the two flexible constructs in conjunction with a generalized Born implicit solvent model. The calculated rate of FRET was derived from the interchromophore distance, R, and orientational factor, kappa(2). In agreement with experiment, the construct with the C-terminally attached dye was predicted to have higher energy transfer rate than observed for the N-terminal construct. The molecular basis for this observation is discussed. In addition, we find that the orientational factor, kappa(2), deviates from the commonly assumed value, the implications of which are also considered.  相似文献   

17.
Heparin is a key player in cell signaling via its physical interactions with protein targets in the extracellular matrix. However, basic molecular level understanding of these highly biologically relevant intermolecular interactions is still incomplete. In this study, for the first time, microsecond-scale MD simulations are reported for a complex between fibroblast growth factor 1 and heparin. We rigorously analyze this molecular system in terms of the conformational space, structural, energetic, and dynamic characteristics. We reveal that the conformational selection mechanism of binding denotes a recognition specificity determinant. We conclude that the length of the simulation could be crucial for evaluation of some of the analyzed parameters. Our data provide novel significant insights into the interactions in the fibroblast growth factor 1 complex with heparin, in particular, and into the physical-chemical nature of protein-glycosaminoglycan systems in general, which have potential applicability for biomaterials development in the area of regenerative medicine.  相似文献   

18.
Oxyimino-cephalosporin antibiotics, such as ceftazidime, escape the hydrolytic activity of most bacterial β-lactamases. Their widespread use prompted the emergence of the extended-spectrum β-lactamases CTX-Ms, which have become highly prevalent. The C7 β-amino thiazol-oxyimino-amide side chain of ceftazidime has a protective effect against most CTX-M β-lactamases. However, Asp240Gly CTX-M derivatives demonstrate enhanced hydrolytic activity against this compound. In this work, we present the crystallographic structures of Asp240Gly-harboring enzyme CTX-M-16 in complex with ceftazidime-like glycylboronic acid (resolution 1.80 Å) and molecular dynamics simulations of the corresponding acyl-enzyme complex. These experiments revealed breathing motions of CTX-M enzymes and the role of the substitution Asp240Gly in the accommodation of ceftazidime. The substitution Asp240Gly resulted in insertion of the C7β side chain of ceftazidime deep in the catalytic pocket and orchestrated motions of the active serine Ser70, the β3 strand and the omega loop, which favored the key interactions of the residues 237 and 235 with ceftazidime.  相似文献   

19.
Joshi M  Ebalunode JO  Briggs JM 《Proteins》2009,75(2):323-335
The anthrax lethal factor is a zinc metalloprotease toxin secreted by Bacillus anthracis which cleaves at the N-terminal region of six mitogen activated protein kinase kinases (MEKs) in the cell. Additionally, it is known to cleave a nine residue peptide "LF10," 50-fold more efficiently than nine residues of MEK1. There is very little sequence similarity between the MEK N-termini, thus, it is unclear how the lethal factor can accommodate and cleave the diverse N-termini of the MEKs and whether there is a hierarchy in this interaction, as there is between LF10 and MEK1. To investigate this problem, we carried out multiple molecular dynamics simulations of the lethal factor with nine residues of each of the substrates. Our simulations reveal that like LF10, certain MEK substrates have residue compositions that favor beta-sheet formation with the lethal factor over others. The formation of this secondary structure maintains a catalytic conformation. Binding energetics using the MM-PBSA method was used to rank-order the substrates for their affinity to LF (K(M)). On the basis of the results, we conclude that the LF does not equally accommodate the MEK substrates and further predict that there will be differences between rates of cleavage among the nine residue MEK N-termini.  相似文献   

20.
The clarification of the physico-chemical determinants underlying amyloid deposition is critical for our understanding of misfolding diseases. With this purpose we have performed a systematic all-atom molecular dynamics (MD) study of a series of single point mutants of the de novo designed amyloidogenic peptide STVIIE. Sixteen different 50ns long simulations using explicit solvent have been carried out starting from four different conformations of a polymeric six-stranded beta-sheet. The simulations have provided evidence for the influence of a small number of site-specific hydrophobic interactions on the packing and stabilization of nascent aggregates, as well as the interplay between side-chain interactions and the net charge of the molecule on the strand arrangement of polymeric beta-sheets. This MD analysis has also shed light into the origin of the position dependence on mutation of beta-sheet polymerization that was found experimentally for this model system. Our results suggest that MD can be applied to detect critical positions for beta-sheet aggregation within a given amyloidogenic stretch. Studies similar to the one presented here can guide site-directed mutations or the design of drugs that specifically disrupt the key stabilizing interactions of beta-sheet aggregates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号