首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alpha lipoic acid (ALA) is a powerful antioxidant which has been widely used in the treatment of different system diseases, such as cardiovascular and cerebrovascular diseases. But, there are few studies that refer to protective effects and potential mechanisms on traumatic brain injury (TBI). This study was carried out to investigate the neuroprotective effect following TBI and illuminate the underlying mechanism. Weight drop‐injured model in rats was induced by weight‐drop. ALA was administrated via intraperitoneal injection after TBI. Neurologic scores were examined following several tests. Neurological score was performed to measure behavioural outcomes. Nissl staining and TUNEL were performed to evaluate the neuronal apoptosis. Western blotting was engaged to analyse the protein content of the Nuclear factor erythroid 2‐related factor 2 (Nrf2) and its downstream protein factors, including hemeoxygenase‐1 (HO‐1) and quinine oxidoreductase‐1 (NQO1). ALA treatment alleviated TBI‐induced neuron cell apoptosis and improved neurobehavioural function by up‐regulation of Nrf2 expression and its downstream protein factors after TBI. This study presents new perspective of the mechanisms responsible for the neuronal apoptosis of ALA, with possible involvement of Nrf2 pathway.  相似文献   

2.
3.
Sirtuin 1 (SIRT1) plays a very important role in a wide range of biological responses, such as metabolism, inflammation and cell apoptosis. Changes in the levels of SIRT1 have been detected in the brain after traumatic brain injury (TBI). Further, SIRT1 has shown a neuroprotective effect in some models of neuronal death; however, its role and working mechanisms are not well understood in the model of TBI. This study aimed to address this issue. SIRT1-specific inhibitor (sirtinol) and activator (A3) were introduced to explore the role of SIRT1 in cell apoptosis. Results of the study suggest that SIRT1 plays an important role in neuronal apoptosis after TBI by inhibiting NF-κB, IL-6 and TNF-α deacetylation and the apoptotic pathway sequentially, possibly by alleviating neuroinflammation.  相似文献   

4.
5.
Oxidative stress, hepatic steatosis, and mitochondrial dysfunction are key pathophysiological features of nonalcoholic fatty liver disease. A conjugated linoleic acid (CLA) mixture of cis9,trans11 (9,11-CLA) and trans10,cis12 (10,12-CLA) isomers enhanced the antioxidant/detoxifying mechanism via the activation of nuclear factor E2-related factor-2 (Nrf2) and improved mitochondrial function, but less is known about the actions of specific isomers. The differential ability of individual CLA isomers to modulate these pathways was explored in Wistar rats fed for 4 weeks with a lard-based high-fat diet (L) or with control diet (CD), and, within each dietary treatment, two subgroups were daily administered with 9,11-CLA or 10,12-CLA (30 mg/day). The 9,11-CLA, but not 10,12-CLA, supplementation to CD rats improves the GSH/GSSG ratio in the liver, mitochondrial functions, and Nrf2 activity. Histological examination reveals a reduction of steatosis in L-fed rats supplemented with both CLA isomers, but 9,11-CLA downregulated plasma concentrations of proinflammatory markers, mitochondrial dysfunction, and oxidative stress markers in liver more efficiently than in 10,12-CLA treatment. The present study demonstrates the higher protective effect of 9,11-CLA against diet-induced pro-oxidant and proinflammatory signs and suggests that these effects are determined, at least in part, by its ability to activate the Nrf2 pathway and to improve the mitochondrial functioning and biogenesis.  相似文献   

6.
7.
《Autophagy》2013,9(12):2208-2222
Dysregulation of autophagy contributes to neuronal cell death in several neurodegenerative and lysosomal storage diseases. Markers of autophagy are also increased after traumatic brain injury (TBI), but its mechanisms and function are not known. Following controlled cortical impact (CCI) brain injury in GFP-Lc3 (green fluorescent protein-LC3) transgenic mice, we observed accumulation of autophagosomes in ipsilateral cortex and hippocampus between 1 and 7 d. This accumulation was not due to increased initiation of autophagy but rather to a decrease in clearance of autophagosomes, as reflected by accumulation of the autophagic substrate SQSTM1/p62 (sequestosome 1). This was confirmed by ex vivo studies, which demonstrated impaired autophagic flux in brain slices from injured as compared to control animals. Increased SQSTM1 peaked at d 1–3 but resolved by d 7, suggesting that the defect in autophagy flux is temporary. The early impairment of autophagy is at least in part caused by lysosomal dysfunction, as evidenced by lower protein levels and enzymatic activity of CTSD (cathepsin D). Furthermore, immediately after injury both autophagosomes and SQSTM1 accumulated predominantly in neurons. This was accompanied by appearance of SQSTM1 and ubiquitin-positive puncta in the affected cells, suggesting that, similar to the situation observed in neurodegenerative diseases, impaired autophagy may contribute to neuronal injury. Consistently, GFP-LC3 and SQSTM1 colocalized with markers of both caspase-dependent and caspase-independent cell death in neuronal cells proximal to the injury site. Taken together, our data indicated for the first time that autophagic clearance is impaired early after TBI due to lysosomal dysfunction, and correlates with neuronal cell death.  相似文献   

8.
Dysregulation of autophagy contributes to neuronal cell death in several neurodegenerative and lysosomal storage diseases. Markers of autophagy are also increased after traumatic brain injury (TBI), but its mechanisms and function are not known. Following controlled cortical impact (CCI) brain injury in GFP-Lc3 (green fluorescent protein-LC3) transgenic mice, we observed accumulation of autophagosomes in ipsilateral cortex and hippocampus between 1 and 7 d. This accumulation was not due to increased initiation of autophagy but rather to a decrease in clearance of autophagosomes, as reflected by accumulation of the autophagic substrate SQSTM1/p62 (sequestosome 1). This was confirmed by ex vivo studies, which demonstrated impaired autophagic flux in brain slices from injured as compared to control animals. Increased SQSTM1 peaked at d 1–3 but resolved by d 7, suggesting that the defect in autophagy flux is temporary. The early impairment of autophagy is at least in part caused by lysosomal dysfunction, as evidenced by lower protein levels and enzymatic activity of CTSD (cathepsin D). Furthermore, immediately after injury both autophagosomes and SQSTM1 accumulated predominantly in neurons. This was accompanied by appearance of SQSTM1 and ubiquitin-positive puncta in the affected cells, suggesting that, similar to the situation observed in neurodegenerative diseases, impaired autophagy may contribute to neuronal injury. Consistently, GFP-LC3 and SQSTM1 colocalized with markers of both caspase-dependent and caspase-independent cell death in neuronal cells proximal to the injury site. Taken together, our data indicated for the first time that autophagic clearance is impaired early after TBI due to lysosomal dysfunction, and correlates with neuronal cell death.  相似文献   

9.
Extracellular basic pH regulates cellular processes in wounds, and consequently influenced wound healing. Oxidative defence system modulation in the skin helps heal wounds, inhibits skin ageing and improves the skin condition. Moreover, the role of keratinocyte growth factor (KGF) and nuclear factor erythroid 2-related factor 2 (Nrf2) in antioxidant systems has been reported in various skin models. However, the effects of extracellular basic pH on wound- or skin ageing-related skin damage have not been examined. Thus, we investigated the antioxidant systems affected by extracellular basic pH in a 3D human skin equivalent system (3HSE). Extracellular basic pH decreased KGF expression and enhanced the oxidative defence system, and thus activated Nrf2 in the 3HSE. Additionally, extracellular basic pH and KGF treatment up-regulated Nrf2 activation and its regulation of the oxidative defence system in the 3HSE. This indicates that Nrf2 up-regulation is enhanced by reactive oxygen species production, rather than KGF, and by extracellular basic pH of the skin. The inhibition of skin damage through pH imbalance and KGF regulation suggests that the development of pH-regulating or pH-maintaining materials may provide effective therapeutic strategies for maintaining a healthy skin.  相似文献   

10.
Traumatic brain injury (TBI) is defined as a traumatically induced structural injury or physiological disruption of brain function as a result of external forces, leading to adult disability and death. A growing body of evidence reveals that alterations in autophagy-related proteins exist extensively in both experimentally and clinically after TBI. Of note, the autophagy pathway plays an essential role in pathophysiological processes, such as oxidative stress, inflammatory response, and apoptosis, thus contributing to neurological properties of TBI. With this in mind, this review summarizes a comprehensive overview on the beneficial and detrimental effects of autophagy in pathophysiological conditions and how these activities are linked to the pathogenesis of TBI. Moreover, the relationship between oxidative stress, inflammation, apoptosis, and autophagy occur TBI. Ultimately, multiple compounds and various drugs targeting the autophagy pathway are well described in TBI. Therefore, autophagy flux represents a potential clinical therapeutic value for the treatment of TBI and its complications.  相似文献   

11.
12.
Caspases, a cysteine proteinase family, are required for the initiation and execution phases of apoptosis. It has been suggested that caspase 7, an apoptosis executioner implicated in cell death proteolysis, is redundant to the main executioner caspase 3 and it is generally believed that it is not present in the brain or present in only minute amounts with highly restricted activity. Here we report evidence that caspase 7 is up-regulated and activated after traumatic brain injury (TBI) in rats. TBI disrupts homeostasis resulting in pathological apoptotic activation. After controlled cortical impact TBI of adult male rats we observed, by semiquantitative real-time PCR, increased mRNA levels within the traumatized cortex and hippocampus peaking in the former about 5 days post-injury and in the latter within 6-24 h of trauma. The activation of caspase 7 protein after TBI, demonstrated by immunoblot by the increase of the active form of caspase 7 peaking 5 days post-injury in the cortex and hippocampus, was found to be up-regulated in both neurons and astrocytes by immunohistochemistry. These findings, the first to document the up-regulation of caspase 7 in the brain after acute brain injury in rats, suggest that caspase 7 activation could contribute to neuronal cell death on a scale not previously recognized.  相似文献   

13.
Minocycline is a type of tetracycline antibiotic with broad-spectrum antibacterial activity that has been demonstrated to protect the brain against a series of central nervous system diseases. However, the precise mechanisms of these neuroprotective actions remain unknown. In the present study, we found that minocycline treatment significantly reduced HT22 cell apoptosis in a mechanical cell injury model. In addition, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining confirmed the neuroprotective effects of minocycline in vivo through the inhibition of apoptosis in a rat model of controlled cortical impact (CCI) brain injury. The western blotting analysis revealed that minocycline treatment significantly downregulated the pro-apoptotic proteins BAX and cleaved caspase-3 and upregulated the anti-apoptotic protein BCL-2. Furthermore, the beam-walking test showed that the administration of minocycline ameliorated traumatic brain injury (TBI)-induced deficits in motor function. Taken together, these findings suggested that minocycline attenuated neuronal apoptosis and improved motor function following TBI.  相似文献   

14.
15.
16.
目的:研究大鼠弥漫性颅脑创伤后脑组织中脑红蛋白的表达变化情况,探究创伤后脑红蛋白表达变化及其与神经元凋亡的关系。方法:采用雄性SD大鼠50只,随机分为10组(n=5)空白对照组、伤后30min、1h、2h、6h、12h、24h、48h、72h和5d组。以Marmarou’s自由落体打击装置复制颅脑创伤模型,采用免疫组化技术检测伤后不同时间脑组织中脑红蛋白的表达情况及神经元凋亡相关基因Bax、Bcl-2表达情况,并对所得数据进行统计学分析。结果:致伤区皮层神经元脑红蛋白表达分别于伤后2h、72h呈现出两次高峰表达;伤后30min~1h、48~72h期间大脑皮层区脑红蛋白表达的上调均伴随着Bax/Bcl-2比值上升趋势减缓甚至呈现下降趋势。结论:弥漫性颅脑创伤后脑组织中脑红蛋白的高表达在一定程度上可以拮抗创伤应激及伤后继发缺血、缺氧性损伤所导致的神经元凋亡,在颅脑创伤的超早期(〈3h)、急性期(〈72h)可能具有一定的神经保护作用。  相似文献   

17.
Traumatic brain injury (TBI) is a serious public health problem as well as a leading cause of severe posttraumatic disability. Numerous studies indicate that the differentially expressed genes (DEGs) of neural signaling pathways are strongly correlated with brain injury. To further analyze the roles of the DGEs in the central nervous system, here we systematically investigated TBI on the hippocampus and its injury mechanism at the whole genome level. On the basis of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes Analyses, we revealed that the DEGs were involved in many signaling pathways related to the nervous system, especially neuronal survival-related pathways. Finally, we verified the microarray results and detected the gene expression of neuronal survival-related genes in the hippocampus by using real-time quantitative polymerase chain reaction. With Western blot and axon growth assay, the expression of P2rx3 was upregulated in rats subjected to TBI, and overexpression of P2rx3 promoted neurite growth of NG108 cells. Our results suggested that the DEGs (especially P2rx3) and several signaling pathways might play a pivotal role in TBI. We also provided several targeted genes related to TBI for future investigation.  相似文献   

18.
Compromised TLR-mediated chronic inflammation contributes to bacterial infection-caused chronic suppurative otitis media, but the mechanisms are unclear. The present study examined the expression status of nuclear erythroid 2-related factor 2 (Nrf2) and TLRs in human middle-ear mucosae tissues collected from patients with chronic suppurative otitis media, chronic otitis media and non-otitis media, and found that Nrf2 was high-expressed, whereas TLR4, instead of other TLRs, was low expressed in chronic suppurative otitis media compared to chronic otitis media and non-chronic otitis media groups. Consistently, inflammatory cytokines were significantly up-regulated in the chronic suppurative otitis media group, instead of the chronic otitis media and non-chronic otitis media groups. Next, LPS-induced acute otitis media and chronic suppurative otitis media models in mice were established, and high levels of inflammatory cytokines were sustained in the mucosae tissues of chronic suppurative otitis media mice compared to the non-otitis media and acute otitis media groups. Interestingly, continuous low-dose LPS stimulation promoted Nrf2 expression, but decreased TLR4 levels in chronic suppurative otitis media mice mucosae. In addition, knock-down of Nrf2 increased TLR4 expression levels in chronic suppurative otitis media mice, and both Nrf2 ablation and TLR4 overexpression inhibited the pro-inflammatory cytokine expression in chronic suppurative otitis media. Finally, we found that both Nrf2 overexpression and TLR4 deficiency promoted chronic inflammation in LPS-induced acute otitis media mice models. Taken together, knock-down of Nrf2 reversed chronic inflammation to attenuate chronic suppurative otitis media by up-regulating TLR4.  相似文献   

19.
《Free radical research》2013,47(5):368-375
Abstract

Oxidative stress (OS) is involved in the progression of intracerebral haemorrhage (ICH)-induced secondary brain injury. The pathway involving Kelch-like ECH-associated protein 1 (Keap1) and nuclear factor erythroid 2-related factor 2 (Nrf2) is currently recognised as the major endogenous regulatory system against oxidative injury. Although its beneficial role has been described for ICH, the time course of Keap1-Nrf2 pathway expression, the activity of downstream antioxidative enzymes, and the association with brain oedema and neurological deficits have not been fully investigated. In this study, we investigated the temporal changes in expression of Keap1, Nrf2, and their downstream antioxidative proteins in the ICH rat brain. We additionally quantified the relationship between these gene and protein changes with brain water content and neurological behaviour scores. After blood infusion, Keap1 showed decreased expression starting at 8 h, whereas Nrf2 began to show a significant increase at 2 h with a peak at 24 h. Keap1 and Nrf2 are chiefly expressed in neuronal cells but not in glial cells. The downstream antioxidative enzymes such as haemeoxygenase-1 (HO-1), glutathione (GSH), thioredoxin (TRX), and glutathione-S-transferase (GST-α1) increased to different degrees during the early stages of ICH. Among these enzymes, HO-1 showed a significant time-dependent increase starting 8 h after ICH. In addition, there was a positive correlation between the HO-1 level and brain water content. In combination, these results suggest that activation of the Keap1-Nrf2 pathway may play an important endogenous neuroprotective role during OS after ICH. Because HO-1 expression is temporally associated with brain oedema – reflective of the severity of brain injury – it may be used as a biomarker of haeme-mediated oxidative damage after ICH.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号