首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Autophagy refers to the genetically regulated process to regulate the survival and death of cells, which is conserved in evolution. Typically, autophagy exerts a vital part under physiopathological conditions. Whether autophagy can be resulted from chronic intermittent hypoxia (CIH), a prominent characteristic of obstructive sleep apnea-hypopnea syndrome (OSAHS), remains to be investigated. Furthermore, microRNAs (miRNAs) can serve as the regulating factors in a variety of benign and malignant diseases; nonetheless, it remains to be fully illustrated about the way by which miRNAs modulate autophagy. According to our results, for human coronary artery endothelial cells (HCAECs), CIH increased the expression of autophagy-associated proteins, which depended on the concentration and time; besides, it could promote autophagic vacuole (AV) formation. In addition, CIH could activate beclin 1, which was dependent on dose and time. In HCAECs, microRNA-34a-5p (miR-34a-5p) was overexpressed after exposed to CIH, and its target protein B-cell lymphoma 2 (Bcl-2) was downregulated. Moreover, inhibiting miR-34a-5p increased Bcl-2 and p62 expression, while downregulating beclin 1, Vps34, Atg5, and LC3 levels, implying the role of miR-34a-5p in CIH-induced autophagy. Moreover, exogenous upregulation of Bcl-2 could block miR-34a-5p influence on CIH-induced autophagy through suppressing beclin 1 expression. Additionally, beclin 1 could enhance the autophagy induced by CIH. In conclusion, overexpression of miR-34a-5p activated beclin 1 through Bcl-2 inhibition in CIH and participated in CIH-induced autophagy.  相似文献   

2.
Finding ways to reduce myocardial ischemia/reperfusion injury in the process of myocardial infarction has been an area of intense study in the field of heart disease. Recent studies have shown that long noncoding RNA (lncRNA) and autophagy play important roles in cardiovascular diseases. In our study, software analysis and dual-luciferase reporter assays have shown that miR-30a has binding sites on both AK088388 and Beclin-1. Continuing experiments found that miR-30a expression is downregulated, while the expressions of AK088388, Beclin-1, and LC3-II are upregulated in hypoxia/reoxygenation (H/R) cardiomyocytes; miR-30a inhibits the expression of AK088388, Beclin-1, and LC3-II in H/R cardiomyocytes, while AK088388 promotes the expression of Beclin-1 and LC3-II and inhibits miR-30a expression. AK088388 small interfering RNA and miR-30a mimics can promote the viability of H/R cardiomyocytes, reduce lactate dehydrogenase release, and reduce apoptosis. Mutations of the miR-30a binding site in AK088388 could not block the effects of miR-30a mentioned above. Therefore, AK088388 can competitively bind to miR-30a, promoting the expression of Beclin-1 and LC3-II, autophagy, and eventually cell damage. This finding provides new evidence for understanding the role of lncRNA in myocardial ischemia/reperfusion injury.  相似文献   

3.
目的:构建Beclin-1基因短发夹干扰RNA(shRNA)慢病毒载体,感染人SH-SY5Y细胞,观察沉默Beclin-1基因后低氧对SH-SY5Y细胞自噬的影响。方法:构建特异性靶向Beclin-1基因的shRNA慢病毒表达载体和阴性对照序列慢病毒载体;再将载体转染入SH-SY5Y细胞;RT-PCR检测Beclin-1的mRNA表达;Western blot检测Beclin-1蛋白表达;CCK-8法测定Beclin-1 shRNA对SH-SY5Y细胞活力的影响。再将空白对照、阴性对照、转染型三种细胞分别以21%常氧及5%低氧培养,Western blot检测各组细胞LC3蛋白表达;电镜观察自噬小体。结果:Beclin-1 shRNA能明显抑制SH-SY5Y细胞Beclin-1的mRNA及蛋白的表达;沉默Beclin-1基因后,Beclin-1 shRNA组细胞存活率与阴性对照组相比无差异;成功建立了稳定表达Beclin-1 shRNA的SH-SY5Y细胞。5%低氧处理后,与阴性对照组相比较,Beclin-1 shRNA组细胞中LC3Ⅱ/LC3Ⅰ比值下调,细胞内自噬小体数量减少。结论:慢病毒介导的Beclin-1shRNA对SH-SY5Y细胞的活力无影响,但可以抑制低氧诱导的自噬。  相似文献   

4.
Autophagy maintains cells survival in many stressful conditions including starvation, growth factor deprivation and misfolded protein accumulation. Additionally, autophagic survival mechanisms are used by transformed tumor cells to inhibit cell death, limit drug effectiveness and possibly generate drug resistance. However, the mechanism of how cells utilize autophagy during drug resistance is not fully understood. Here, we demonstrate that miR-216b plays an important role in alleviating drug resistance by regulating autophagy in melanoma. We show that miR-216b attenuates autophagy by directly targeting three key autophagy genes Beclin-1, UVRAG and ATG5. Overexpression of these genes from miRNA immune cDNA constructs rescue autophagic activity in the presence of miR-216b. Antagomir-mediated inactivation of endogenous miR-216b led to an increase of Beclin-1, UVRAG, ATG5, and subsequent autophagic activity. More importantly, we have discovered that BRAF(V600E) inhibitor vemurafenib suppresses miR-216b activity, which in turn activates autophagy to generate drug resistance in both BRAFi-sensitive and -resistant cells. Strikingly, ectopic expression of miR-216b increases the efficacy of vemurafenib both in vitro and in vivo. Taken together, these data indicate that miR-216b regulates autophagy by suppressing three key autophagy genes, and enhances the antitumor activity of vemurafenib in BRAF(V600E) melanoma cells.  相似文献   

5.
6.
miRNAs play an important role in the pathogenesis of cardiac hypertrophy and dysfunction. However, little is known about how miR-30a regulates cardiomyocyte hypertrophy. In the study, Male C57BL/6 mice were subjected to thoracic aortic constriction, and hearts were harvested at 3 weeks. We assayed miR-30a expression level by real-time PCR and defined the molecular mechanisms of miR-30a-mediated cardiomyocyte hypertrophy. We found that myocardial expression of miR-30a was decreased in mouse models of hypertrophy and in H9c2 cells treated with phenylephrine. MiR-30a inhibition markedly increased mRNA expression of cardiac hypertrophy markers such as atrial natriuretic factor and brain natriuretic peptide in H9c2, and cell size was increased after miR-30a inhibitor treatment. Downregulated miR-30a activated autophagy by inhibiting beclin-1 expression in H9c2 cell. More important, autophagy inhibition suppressed miR-30a inhibitor-induced cardiomyocyte hypertrophy. Together, our data demonstrated that downregulated miR-30a aggravates pressure overload-induced cardiomyocyte hypertrophy by activating autophagy, thus offering a new target for the therapy of cardiomyocyte hypertrophy.  相似文献   

7.
Macroautophagy (autophagy) is the major intracellular degradation pathway for long-lived proteins and organelles. It helps the cell to survive a spectrum of stressful conditions including starvation, growth factor deprivation and misfolded protein accumulation. Moreover, abnormalities of autophagy play a role in major health problems including cancer and neurodegenerative diseases. Yet, mechanisms controlling autophagic activity are not fully understood. Here, we describe hsa-miR-376b (miR-376b) as a new microRNA (miRNA) regulating autophagy. We showed that miR-376b expression attenuated starvation- and rapamycin-induced autophagy in MCF-7 and Huh-7 cells. We discovered autophagy proteins ATG4C and BECN1 (Beclin 1) as cellular targets of miR-376b. Indeed, upon miRNA overexpression, both mRNA and protein levels of ATG4C and BECN1 were decreased. miR-376b target sequences were present in the 3' UTR of ATG4C and BECN1 mRNAs and introduction of mutations abolished their miR-376b responsiveness. Antagomir-mediated inactivation of the endogenous miR-376b led to an increase in ATG4C and BECN1 levels. Therefore, miR-376b controls autophagy by directly regulating intracellular levels of two key autophagy proteins, ATG4C and BECN1.  相似文献   

8.
This study aimed to investigate the protective effect of ulinastatin in hepatic ischemia-reperfusion progress, involving its association with the role of autophagy during hypoxia-induced hypoxia-reoxygenation injury in vitro. The model of hepatic hypoxia/reoxygenation (H/R) injury in Chang liver cells was established. After treatment with ulinastatin at the doses of 10, 100, and 1000 U/mL in H/R liver cells, the cell proliferation was significantly increased, morphological damage was reduced, and the cell apoptosis rate was decreased. The protein levels of antiapoptotic myeloid cell leukemia-1 (Mcl-1) and caspase-3 were upregulated, and C-PARP protein was downregulated. Meanwhile, ulinastatin led to an increase in the messenger RNA and protein levels of autophagy maker Unc-like kinase 1 (ULK1), Beclin-1, and microtubule-associated protein 1 light chain 3 (LC-3) and a decrease in p62. Then, 3-methyladenine (3-MA), an inhibitor of autophagy, made morphological damage and cell apoptosis worsen in ulinastatin-treated H/R liver cells. And the expression levels of caspase-3, C-PARP, p62, Beclin-1, and LC-3, proteins were also reversed by 3-MA. Taken together, our results demonstrate that ulinastatin inhibited the hepatic H/R injury in Chang liver cells, which was, to some extent, related to the autophagy activation.  相似文献   

9.
《Autophagy》2013,9(2):165-176
Macroautophagy (autophagy) is the major intracellular degradation pathway for long-lived proteins and organelles. It helps the cell to survive a spectrum of stressful conditions including starvation, growth factor deprivation and misfolded protein accumulation. Moreover, abnormalities of autophagy play a role in major health problems including cancer and neurodegenerative diseases. Yet, mechanisms controlling autophagic activity are not fully understood. Here, we describe hsa-miR-376b (miR-376b) as a new microRNA (miRNA) regulating autophagy. We showed that miR-376b expression attenuated starvation- and rapamycin-induced autophagy in MCF-7 and Huh-7 cells. We discovered autophagy proteins ATG4C and BECN1 (Beclin 1) as cellular targets of miR-376b. Indeed, upon miRNA overexpression, both mRNA and protein levels of ATG4C and BECN1 were decreased. miR-376b target sequences were present in the 3′ UTR of ATG4C and BECN1 mRNAs and introduction of mutations abolished their miR-376b responsiveness. Antagomir-mediated inactivation of the endogenous miR-376b led to an increase in ATG4C and BECN1 levels. Therefore, miR-376b controls autophagy by directly regulating intracellular levels of two key autophagy proteins, ATG4C and BECN1.  相似文献   

10.
BackgroundDiabetic nephropathy (DN) is a primary cause of end‐stage renal disease. Increasing evidence indicates that microRNAs (miRNAs) are involved in DN pathogenesis. Trigonelline (TRL) has been shown to lower blood sugar and cholesterol levels, promote nerve regeneration, and exert anti-cancer and sedative properties.MethodThe effect of TRL on human mesangial cell (HMC) growth was assessed using the MTT assay. Differentially expressed miRNAs were validated using real-time quantitative polymerase chain reaction (real-time PCR). Bioinformatics, cell transfection, and Western blot analyses were utilized to confirm the binding of miR-5189-5p to HIF1AN. The effects of miR-5189-5 expression on cell proliferation were also assessed. Western blot analysis was used to determine the activation of multiple signaling molecules including phosphorylated-(p)-AMPK, SIRT1, LC3B, p62, and Beclin-1 in the autophagy pathway.ResultsTRL improved proliferation, increased the expression of miR-5189-5p, reduced HIF1AN, and restored the inhibition of autophagy in HMCs induced by high glucose. MiR-5189-5p mimics inhibited HIF1AN expression, and the miR-5189-5p inhibitor increased HIF1AN expression. MiR-5189-5p mimics significantly improved the proliferation of HMCs induced by high glucose, reduced the relative protein expression of p-AMPK, SIRT1, LC3B, and Beclin-1, and significantly increased the relative protein expression of p62.ConclusionWe showed that TRL up-regulated miR-5189-5p expression, activated the AMPK pathway, and activated autophagy in HMCs. Our study demonstrates that TRL could be a new treatment strategy to protect mesangial cells in response to high glucose.  相似文献   

11.
Elevated expression of tissue transglutaminase (TG2) in cancer cells has been implicated in the development of drug resistance and metastatic phenotypes. However, the role and the mechanisms that regulate TG2 expression remain elusive. Here, we provide evidence that protein kinase Cdelta (PKCdelta) regulates TG2 expression, which in turn inhibits autophagy, a type II programmed cell death, in pancreatic cancer cells that are frequently insensitive to standard chemotherapeutic agents. Rottlerin, a PKCdelta-specific inhibitor, and PKCdelta small interfering RNA (siRNA) down-regulated the expression of TG2 mRNA and protein and induced growth inhibition without inducing apoptosis in pancreatic cancer cells. Inhibition of PKCdelta by rottlerin or knockdown of TG2 protein by a TG2-specific siRNA resulted in a marked increase in autophagy shown by presence of autophagic vacuoles in the cytoplasm, formation of the acidic vesicular organelles, membrane association of microtubule-associated protein 1 light chain 3 (LC3) with autophagosomes, and a marked induction of LC3-II protein, important hallmarks of autophagy, and by electron microscopy. Furthermore, inhibition of TG2 by rottlerin or by the siRNA led to accumulation of green fluorescent protein (GFP)-LC3-II in autophagosomes in pancreatic cancer cells transfected with GFP-LC3 (GFP-ATG8) expression vector. Knockdown of Beclin-1, a specific autophagy-promoting protein and the product of Becn1 (ATG6), inhibited rottlerin-induced and TG2 siRNA-induced autophagy, indicating that Beclin-1 is required for this process. These results revealed that PKCdelta plays a critical role in the expression of TG2, which in turn regulates autophagy. In conclusion, these results suggest a novel mechanism of regulation of TG2 and TG2-mediated autophagy in pancreatic cancer cells.  相似文献   

12.
探究黑果枸杞花青素在体外对人肝癌HepG2细胞增殖和自噬的影响.利用CCK-8法测定细胞活力,EdU和细胞划痕试验检测细胞增殖和迁移效果,RT-PCR和Western blot检测增殖和自噬相关基因的mRNA和蛋白表达.结果显示,黑果枸杞花青素可有效抑制人肝癌HepG2细胞的增殖和迁移;上调增殖因子(LATS1、LAT...  相似文献   

13.
Apoptosis has been widely reported to be involved in the pathogenesis associated with spinal cord injury (SCI). Recently, autophagy has also been implicated in various neuronal damage models. However, the role of autophagy in SCI is still controversial and its interrelationship with apoptosis remains unclear. Here, we used an in vitro SCI model to observe a time-dependent induction of autophagy and apoptosis. Mechanical injury induced autophagy markers such as LC3 lipidation, LC3II/LC3I conversion, and Beclin-1expression. Injured neurons showed decreased cell viability and increased apoptosis. To elucidate the effect of autophagy on apoptosis, the mechanically-injured neurons were treated with the mTOR inhibitor rapamycin and 3-methyl adenine (3-MA), which are known to regulate autophagy positively and negatively, respectively. Rapamycin-treated neurons showed the highest level of cell viability and lowest level of apoptosis among the injured neurons and those treated with 3-MA showed the reciprocal effect. Notably, rapamycin-treated neurons exhibited slightly reduced Bax expression and significantly increasedBcl-2 expression. Furthermore, by plasmid transfection, we showed that Beclin-1-overexpressing neuronal cells responded to mechanical injury with greater LC3II/LC3I conversion and cell viability, lower levels of apoptosis, higher Bcl-2 expression, and unaltered Bax expression as compared to vector control cells. Beclin-1-knockdown neurons showed almost the opposite effects. Taken together, our results suggest that autophagy may serve as a protection against apoptosis in mechanically-injured spinal cord neurons. Targeting mTOR and/or enhancing Beclin-1 expression might be alternative therapeutic strategies for SCI.  相似文献   

14.
The aim of this study was to explore the relationship between the expression of HOXD antisense growth-associated long noncoding RNA (HAGLROS) and prognosis of patients with colorectal cancer (CRC), as well as the roles and regulatory mechanism of HAGLROS in CRC development. The HAGLROS expression in CRC tissues and cells was detected. The correlation between HAGLROS expression and survival time of CRC patients was investigated. Moreover, HAGLROS was overexpressed and suppressed in HCT-116 cells, followed by detection of cell viability, apoptosis, and the expression of apoptosis-related proteins and autophagy markers. Furthermore, the association between HAGLROS and miR-100 and the potential targets of miR-100 were investigated. Besides, the regulatory relationship between HAGLROS and PI3K/AKT/mTOR pathway was elucidated. The results showed that HAGLROS was highly expressed in CRC tissues and cells. Highly expression of HAGLROS correlated with a shorter survival time of CRC patients. Moreover, knockdown of HAGLROS in HCT-116 cells induced apoptosis by increasing the expression of Bax/Bcl-2 ratio, cleaved-caspase-3, and cleaved-caspase-9, and inhibited autophagy by decreasing the expression of LC3II/LC3I and Beclin-1 and increasing P62 expression. Furthermore, HAGLROS negatively regulated the expression of miR-100, and HAGLROS controlled HCT-116 cell apoptosis and autophagy through negatively regulation of miR-100. Autophagy related 5 (ATG5) was verified as a functional target of miR-100 and miR-100 regulated HCT-116 cell apoptosis and autophagy through targeting ATG5. Besides, HAGLROS overexpression activated phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway. In conclusion, a highly expression of HAGLROS correlated with shorter survival time of CRC patients. Downregulation of HAGLROS may induce apoptosis and inhibit autophagy in CRC cells by regulation of miR-100/ATG5 axis and PI3K/AKT/mTOR pathway.  相似文献   

15.
Autophagy is activated in cancer cells during chemotherapy and often contributes to tumor chemotherapy resistance. In this study, we characterized the role of microRNA-30a (miR-30a) in the coordination of cancer cell apoptosis and autophagy, which determines the sensitivity of cancer cells to chemotherapy. First, the autophagy activity in cancer cells increased after cis-dichloro-diamine platinum (cis-DDP) or Taxol treatment, as indicated by the enhanced expression of beclin 1, a key regulator of autophagy, and increased number of LC3-positive autophagosomes. Second, miRNA screening using a TaqMan probe-based quantitative RT-PCR assay identified that miR-30a, a miRNA that targets beclin 1, was significantly reduced in tumor cells by cis-DDP treatment. Forced expression of miR-30a significantly reduced beclin 1 and the autophagy activity of tumor cells induced by cis-DDP. Third, the blockade of tumor cell autophagy activity by miR-30a expression or 3-methyladenine significantly increased tumor cell apoptosis induced by cis-DDP treatment. Finally, an in vivo tumor implantation mouse model clearly showed that elevation of miR-30a in implanted tumor cells by administration of the recombinant lentivirus expressing miR-30a strongly enhanced cis-DDP-induced apoptosis of tumor cells. In conclusion, our results demonstrate for the first time that miR-30a can sensitize tumor cells to cis-DDP via reducing beclin 1-mediated autophagy and that increasing miR-30a level in tumor cells represents a novel approach to enhance the efficacy of chemotherapy during cancer treatment.  相似文献   

16.
Diabetes impairs physiological angiogenesis by molecular mechanisms that are not fully understood. Methylglyoxal (MGO), a metabolite of glycolysis, is increased in patients with diabetes. This study defined the role of MGO in angiogenesis impairment and tested the mechanism in diabetic animals. Endothelial cells and mouse aortas were subjected to Western blot analysis of vascular endothelial growth factor receptor 2 (VEGFR2) protein levels and angiogenesis evaluation by endothelial cell tube formation/migration and aortic ring assays. Incubation with MGO reduced VEGFR2 protein, but not mRNA, levels in a time and dose dependent manner. Genetic knockdown of the receptor for advanced glycation endproducts (RAGE) attenuated the reduction of VEGFR2. Overexpression of Glyoxalase 1, the enzyme that detoxifies MGO, reduced the MGO-protein adducts and prevented VEGFR2 reduction. The VEGFR2 reduction was associated with impaired angiogenesis. Suppression of autophagy either by inhibitors or siRNA, but not of the proteasome and caspase, normalized both the VEGFR2 protein levels and angiogenesis. Conversely, induction of autophagy either by rapamycin or overexpression of LC3 and Beclin-1 reduced VEGFR2 and angiogenesis. MGO increased endothelial LC3B and Beclin-1, markers of autophagy, which were accompanied by an increase of both autophagic flux (LC3 punctae) and co-immunoprecipitation of VEGFR2 with LC3. Pharmacological or genetic suppression of peroxynitrite (ONOO) generation not only blocked the autophagy but also reversed the reduction of VEGFR2 and angiogenesis. Like MGO-treated aortas from normglycemic C57BL/6J mice, aortas from diabetic db/db and Akita mice presented reductions of angiogenesis or VEGFR2. Administration of either autophagy inhibitor ex vivo or superoxide scavenger in vivo abolished the reductions. Taken together, MGO reduces endothelial angiogenesis through RAGE-mediated, ONOOdependent and autophagy-induced VEGFR2 degradation, which may represent a new mechanism for diabetic angiogenesis impairment.  相似文献   

17.

Background

Hydrogen sulfide (H2S), a novel gaseous mediator, has been recognized as an important neuromodulator and neuroprotective agent in the nervous system. The present study was undertaken to study the effects of exogenous H2S on ischemia/reperfusion (I/R) injury of spinal cord and the underlying mechanisms.

Methods

The effects of exogenous H2S on I/R injury were examined by using assessment of hind motor function, spinal cord infarct zone by Triphenyltetrazolium chloride (TTC) staining. Autophagy was evaluated by expressions of Microtubule associated protein 1 light chain 3 (LC3) and Beclin-1 which were determined by using Quantitative Real-Time PCR and Western blotting, respectively.

Results

Compared to I/R injury groups, H2S pretreatment had reduced spinal cord infarct zone, improved hind motor function in rats. Quantitative Real-Time PCR or Western blotting results showed that H2S pretreatment also downregulated miR-30c expression and upregulated Beclin-1 and LC3II expression in spinal cord. In vitro, miR-30c was showed to exert negative effect on Beclin-1 expression by targeting its 3’UTR in SY-SH-5Y cells treated with Oxygen, Glucose Deprivation (OGD). In rat model of I/R injury, pretreatment of pre-miR-30c or 3-MA (an inhibitor for autophagy) can abrogated spinal cord protective effect of H2S.

Conclusion

H2S protects spinal cord and induces autophagy via miR-30c in a rat model of spinal cord hemia-reperfusion injury.  相似文献   

18.
Autophagy is an intracellular process in which a cell digests its own constituents via lysosomal degradative pathway. Though autophagy has been shown in several cardiac diseases like heart failure, hypertrophy and ischaemic cardiomyopathy, the role and the regulation of autophagy is still largely unknown. Bcl-2-associated athanogene (BAG-1) is a multifunctional pro-survival molecule that binds with Hsp70/Hsc70. In this study, myocardial adaptation to ischaemia by repeated brief episodes of ischaemia and reperfusion (I/R) prior to lethal I/R enhanced the expression of autophagosomal membrane specific protein light chain 3 (LC3)-II, and Beclin-1, a molecule involved in autophagy and BAG-1. Autophagosomes structures were found in the adapted myocardium through electron microscopy. Co-immunoprecipitation and co-immunofluorescence analyses revealed that LC3-II was bound with BAG-1. Inhibition of autophagy by treating rats with Wortmannin (15 μg/kg; intraperitoneally) abolished the ischaemic adaptation-induced induction of LC3-II, Beclin-1, BAG-1 and cardioprotection. Intramyocardial injection of BAG-1 siRNA attenuated the induction of LC3-II, and abolished the cardioprotection achieved by adaptation. Furthermore, hypoxic adaptation in cardiac myoblast cells induced LC3-II and BAG-1. BAG-1 siRNA treatment attenuated hypoxic adaptation-induced LC3-II and BAG-1, and abolished improvement in cardiac cell survival and reduction of cell death. These results clearly indicate that myocardial protection elicited by adaptation is mediated at least in part via up-regulation of autophagy in association with BAG-1 protein.  相似文献   

19.
Obstructive sleep apnoea (OSA) is a risk factor for cardiovascular disorders and in some cases is complication of pulmonary hypertension. We simulated OSA by exposing rats to cyclic intermittent hypoxia (CIH) to investigate its effect on pulmonary vascular endothelial dysfunction. Sprague-Dawley Rats were exposed to CIH (FiO2 9% for 1 min, repeated every 2 min for 8 h/day, 7 days/wk for 3 wk), and the pulmonary arteries of normoxia and CIH treated rats were analyzed for expression of endothelin-1 (ET-1) and ET receptors by histological, immunohistochemical, RT-PCR and Western Blot analyses, as well as for contractility in response to ET-1. In the pulmonary arteries, ET-1 expression was increased, and ET-1 more potently elicited constriction of the pulmonary artery in CIH rats than in normoxic rats. Exposure to CIH induced marked endothelial cell damage associated with a functional decrease of endothelium-dependent vasodilatation in the pulmonary artery. Compared with normoxic rats, ETA receptor expression was increased in smooth muscle cells of the CIH rats, while the expression of ETB receptors was decreased in endothelial cells. These results demonstrated endothelium-dependent vasodilation was impaired and the vasoconstrictor responsiveness increased by CIH. The increased responsiveness to ET-1 induced by intermittent hypoxia in pulmonary arteries of rats was due to increased expression of ETA receptors predominantly, meanwhile, decreased expression of ETB receptors in the endothelium may also participate in it.  相似文献   

20.
目的: 本研究利用不同浓度桦木酸处理人胃癌MGC-803细胞,以探究其对细胞自噬的影响。方法: 将人胃癌MGC-803细胞分为4组,每组3个复孔,对照组不加桦木酸处理,其余三组分别加入终浓度为10、20、30 mg/L桦木酸。桦木酸处理细胞48 h后,qRT-PCR检测桦木酸对人胃癌MGC-803细胞自噬相关基因mRNA表达的影响。Western blot检测药物处理细胞自噬相关基因的蛋白表达。利用免疫荧光检测药物处理后MGC-803细胞内LC3蛋白的胞内定位及表达。结果: 与对照组相比,在10~30 mg/L浓度范围内,桦木酸处理的人胃癌MGC-803细胞LC3Beclin-1 mRNA的表达明显升高(P<0.05),Beclin-1、LC3-Ⅱ蛋白的表达显著升高(P<0.05),LC3-Ⅰ蛋白的表达明显降低(P<0.05),其中30 mg/L处理组表现最佳。此外,桦木酸还可诱导MGC-803细胞LC3蛋白在细胞质内形成点状聚集。结论: 在10~30 mg/L浓度范围内,桦木酸能诱导人胃癌MGC-803细胞发生自噬。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号