首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
《Reproductive biology》2021,21(4):100576
Preeclampsia (PE) is a severe pregnancy-specific disorder. Previous findings indicated that pigment epithelium-derived factor (PEDF) was upregulated in placentas of women with PE. Here, we investigated the role of PEDF in trophoblast function, especially under hypoxia. The effects of hypoxia on the morphology of extravillous trophoblast (EVT)-derived HTR-8Svneo cells were observed under inverted microscope. Transfections with Lipofectamine LTX were performed according to the manufacturer's protocol. The expression of PEDF protein and mRNA were confirmed by immunofluorescence (IF) and quantitative real-time PCR (qPCR). Apoptosis was detected by transferase-mediated dUTP nick end labeling (TUNEL) assay, and proliferation of trophoblast was detected by CCK-8 method. The invasion capacity of trophoblast was assessed by Transwell assay. PEDF was expressed in HTR-8/SVneo under both normoxia and hypoxic stress. However, cells of hypoxia groups had higher expression level of PEDF, increased apoptosis and decreased invasion capability, as compared with normoxia group. Moreover, after transfection with plasmid expressing PEDF gene, overexpression of PEDF modulated trophoblast activities. In addition, PEDF expression was negatively associated with invasion while positively correlated with apoptosis.Our data suggest that PEDF is an important factor to maintain the biological function of trophoblast cells, thus representing a rational therapeutic target in PE.  相似文献   

3.
Endoplasmic reticulum (ER) stress has recently been identified as an important process involved in the pathology of pre-eclampsia (PE). Calreticulin (CRT) is an important ER resident protein which participates in the regulation of intracellular Ca(2+) homeostasis, cell adhesion, and cell apoptosis. In order to clarify the role of this protein in normal human pregnancy and in PE, this study has examined the expression of CRT in pre-eclamptic placenta compared with control placenta. The expression of CRT mRNA and protein was elevated in the pre-eclamptic placentas in comparison with control placentas. Furthermore, the expression level was related to the severity of symptoms experienced by PE patients. Therefore, this study aimed to identify the biological characteristics of the CRT gene in trophoblast cells. A CRT-expressing vector was transfected into the JEG-3 human choriocarcinoma cell line. Investigations showed that both proliferation and invasion were inhibited and apoptosis was promoted by CRT expression in JEG-3 cells. These data suggest that augmentation of CRT in the placenta may induce cell apoptosis and impair the invasion of extravillous trophoblast cells, thus leading to shallow placentation in PE.  相似文献   

4.
《Reproductive biology》2022,22(1):100611
Long non-coding RNAs (lncRNAs) have been elucidated to play vital roles in the phenotype of trophoblast cells. Nevertheless, the effect of SNHG1 has not been investigated on trophoblast cells in recurrent spontaneous abortion (RSA). We aim to investigate the effect of SNHG1 on the phenotype of trophoblast cells during RSA. The RSA mice were established by mating female CBA/J mice with male DBA/2 mice. Microarray analysis was applied in RSA mice, and SNHG1 was identified as a significantly downregulated lncRNA. SNHG1 improved pregnancy outcome and reduced embryo resorption in RSA mice. Trophoblast cell proliferation, apoptosis, migration, and invasion were investigated by CCK8, EdU, TUNEL, wound healing, and Transwell assays. SNHG1 promoted proliferation, migration, and invasion of trophoblast cells, and reduced apoptosis. Mechanistically, SNHG1 bound to miR-183-5p in trophoblast cells. Moreover, miR-183-5p directly targeted ZEB2. Rescue experiment showed that ZEB2 silencing reversed the ameliorative effect of SNHG1 on pregnancy outcome and the promotion of trophoblast activity in RSA mice by impaired the Wnt/β-catenin pathway. In conclusion, we found that SNHG1 plays a critical role in the progression of RSA via miR-183-5p/ZEB2 and Wnt/β-catenin signaling. It has potential to be a therapeutic marker of RSA.  相似文献   

5.
6.
7.
In our study we examined the role of microRNA-294 (miR-294) in bladder cancer and related mechanisms. Realtime polymerase chain reaction (RT-PCR) was performed to determine the expression level of miR-294. Western blot was used to determine the expression of NRAS, mainly factors in the PI3K/AKT and JAK/STAT pathways. Cell counting kit8 assay, clonogenic assay, wound-healing assay, transwell and flow cytometry were used to explore, respectively, cell proliferation, survival, migration, invasion, and apoptosis of bladder cancer cell line T24. The expressions of miR-294 in bladder cancer cells including J82, HT1376, T24, and SW780 were significantly increased compared to those in human bladder epithelium cells (both HCV29 and SV-HUC-1). The proliferation rate, surviving fraction, migration, and invasion of T24 cells in miR-294 mimetic transfected group were significantly increased, while they were significantly decreased by miR294 inhibitor transfection. Moreover, miR-294 suppression could increase the apoptotic rate of T24 cells. In addition, drug resistance of T24 cells to cisplatin was increased in miR-294 mimetic-treated group, while it was decreased by miR-294 inhibitor compared to empty control. Overexpression of miR-294 could upregulate NRAS expression in T24 cells and activate PI3K/AKT and JAK/STAT pathways. We found that miR-294 expression was positively related with proliferation and motility of T24 cells. Moreover, miR-294 suppression could promote the sensitivity of T24 cells to cisplatin. We also found miR-294 could upregulate NRAS and activate the PI3K/AKT and JAK/STAT pathways in T24 cells.  相似文献   

8.
Fetal growth restriction (FGR) is a serious pregnancy complication associated with increased perinatal mortality and morbidity. It may lead to neurodevelopmental impairment and adulthood onset disorders. Recently, long noncoding RNAs (lncRNAs) were found to be associated with the pathogenesis of FGR. Here we report that the lncRNAH19 is significantly decreased in placentae from pregnancies with FGR. Downregulation of H19 leads to reduced proliferation and invasion of extravillous trophoblast cells. This is identified with reduced trophoblast invasion, which has been discovered in FGR. Autophagy is exaggerated in FGR. Downregulation of H19 promotes autophagy via the PI3K/AKT/mTOR and MAPK/ERK/mTOR pathways of extravillous trophoblast cells in FGR. We also found that the expression level of microRNAs miR-18a-5p was negatively correlated with that of H19. H19 can act as an endogenous sponge by directly binding to miR-18a-5p, which targets IRF2. The expression of miR-18a-5p was upregulated, but IRF2 expression was downregulated after the H19 knockdown. In conclusion, our study revealed that H19 downexpressed could inhibit proliferation and invasion, and promote autophagy by targeting miR-18a-5pin HTR8 and JEG3 cells. We propose that aberrant regulation of H19/miR-18a-5p-mediated regulatory pathway may contribute to the molecular mechanism of FGR. We indicated that H19 may be a potential predictive, diagnostic, and therapeutic modality for FGR.  相似文献   

9.
Long noncoding RNAs (lncRNAs) are a group of noncoding RNAs whose nucleotides are longer than 200 bp. Previous studies have shown that they play an important regulatory role in many developmental processes and biological pathways. However, the contributions of lncRNAs to placental development are largely unknown. Here, our study aimed to investigate the lncRNA expression signatures in placental development by performing a microarray lncRNA screen. Placental samples were obtained from pregnant C57BL/6 female mice at three key developmental time points (embryonic day E7.5, E13.5, and E19.5). Microarrays were used to analyze the differential expression of lncRNAs during placental development. In addition to the genomic imprinting region and the dynamic DNA methylation status during placental development, we screened imprinted lncRNAs whose expression was controlled by DNA methylation during placental development. We found that the imprinted lncRNA Rian may play an important role during placental development. Its homologous sequence lncRNA MEG8 (RIAN) was abnormally highly expressed in human spontaneous abortion villi. Upregulation of MEG8 expression in trophoblast cell lines decreased cell proliferation and invasion, whereas downregulation of MEG8 expression had the opposite effect. Furthermore, DNA methylation results showed that the methylation of the MEG8 promoter region was increased in spontaneous abortion villi. There was dynamic spatiotemporal expression of imprinted lncRNAs during placental development. The imprinted lncRNA MEG8 is involved in the regulation of early trophoblast cell function. Promoter methylation abnormalities can cause trophoblastic cell defects, which may be one of the factors that occurs in early unexplained spontaneous abortion.  相似文献   

10.
Trophoblast cells express a singular miRNA expression profile which varies during pregnancy and whose alteration may be associated with pregnancy complications. miR-21, a widely known oncomir, is highly expressed in human placenta but its role in regulating trophoblast cells remains unclear. The aim of this study was to investigate miR-21 functions and targets in HTR-8/SVneo immortalized trophoblast and JEG-3 choriocarcinoma cells, which are trophoblast cell models that differ in their cellular origin. Cells were transfected with miR-21-antagomir, -mimic or their respective controls. Following, cell proliferation (BrdU), migration (Transwell and scratch wound-healing assays), invasion (Matrigel assays) and apoptosis (flow cytometry, TUNEL assay and Western blotting) were assessed. Expression of the potential miR-21 targets phosphatase and tensin homolog (PTEN) and programmed cell death 4 (PDCD4) were analyzed by Western blotting. Inhibition of miR-21 decreased cell proliferation, migration, and invasion in JEG-3 and HTR-8/SVneo cells and additionally, induced apoptosis in JEG-3 cells. Silencing of miR-21 enhanced PDCD4 expression only in JEG-3 cells, and PTEN expression only in HTR-8/SVneo cells. Inhibition of miR-21 significantly increased phosphorylation of AKT in HTR-8/SVneo cells. In conclusion, miR-21 has cell-specific targets depending upon the origin of trophoblastic cells. Furthermore, miR-21 regulates major cellular processes including cell growth, migration, invasion and apoptosis suggesting that its impairment may lead to placental disorders.  相似文献   

11.
12.
Uc.40 is a long noncoding RNA that is highly conserved among different species, although its function is unknown. It is highly expressed in abnormal human embryonic heart. We previously reported that overexpression of uc.40 promoted apoptosis and inhibited proliferation of P19 cells, and downregulated PBX1, which was identified as a potential target gene of uc.40. The current study evaluated the effects of uc40-siRNA-44 (siRNA against uc.40) on the differentiation, proliferation, apoptosis, and mitochondrial function in P19 cells, and investigated the relationship between uc.40 and PBX1 in cardiomyocytes. The uc.40 silencing expression was confirmed by quantitative real-time polymerase chain reaction (RT-PCR). Observation of morphological changes in transfected P19 cells during different stages of differentiation revealed that uc40-siRNA-44 increased the number of cardiomyocyes. There was no significant difference in the morphology or time of differentiation between the uc40-siRNA-44 group and the control group. uc40-siRNA-44 significantly promoted proliferation of P19 cells and inhibited serum starvation-induced apoptosis. There was no significant difference in mitochondrial DNA copy number or cellular ATP level between the two groups, and ROS levels were significantly decreased in uc40-siRNA-44-transfected cells. The levels of PBX1 and myocardial markers of differentiation were examined in transfected P19 cells; uc40-siRNA-44 downregulated myocardial markers and upregulated PBX1 expression. These results suggest that uc.40 may play an important role during the differentiation of P19 cells by regulation of PBX1 to promote proliferation and inhibit apoptosis. These studies provide a foundation for further study of uc.40/PBX1 in cardiac development.  相似文献   

13.
Lung adenocarcinoma (LUAD), a common type of lung cancer, has become a popularly aggressive cancer. Long noncoding RNAs (lncRNAs) play a critical role in the pathogenesis of human cancers, while the function of double homeobox A pseudogene 8 (DUXAP8) in LUAD remains to be fully inquired. Therefore, our study was conducted to elucidate the DUXAP8 expression in LUAD and its mechanism on the biological features of LUAD cells. Loss-of-function experiments were performed to assess the function of DUXAP8 proliferation and apoptosis of H1975 and A549 cells. Functionally, silencing DUXAP8 inhibited proliferation and induced apoptosis of LUAD cells. Mechanistically, further correlation assay indicated a negative association between miR-26b-5p and DUXAP8 expression. Subsequently, we testified that DUXAP8 exerted its role in the progression and development of LUAD through targeting miR-26b-5p. In summary, our results elucidated that that DUXAP8 promoted tumor progression in LUAD by targeting miR-26b-5p, which provide a novel therapeutic target for diagnosis and therapy of LUAD.  相似文献   

14.
Pre-eclampsia (PE) is a pregnancy-specific disease characterized by the occurrence of hypertension and proteinuria after two weeks of gestation. Long noncoding RNAs (lncRNAs) are emerging as key regulators in PE development. This study aims to investigate the role of lncRNA, small nucleolar RNA host gene 5 (SNHG5), in the pathogenesis of PE. The expression of SNHG5 was significantly downregulated in placental tissues from patients with severe PE compared normal controls. Overexpression of SNHG5 promoted trophoblast (HTR-8/SVneo) cell proliferation, invasion, and migration, and flow cytometry results showed that SNHG5 overexpression inhibited apoptosis and caused a decrease of cell population at the G 0/G 1 phase and an increase of cell population at the S phase, while knockdown of SNHG5 had the opposite effects. The interaction between SNHG5 and miR-26a-5p was predicted by bioinformatics analysis and confirmed by luciferase reporter assay and RNA immunoprecipitation, and miR-26a-5p was negatively regulated by SNHG5; miR-26a-5p expression was upregulated in PE placental tissues and was inversely correlated with SNHG5 expression. Furthermore, miR-26a-5p was predicted to target the 3′ untranslated region of N-cadherin, which was confirmed by luciferase reporter assay, and miR-26a-5p overexpression suppressed N-cadherin expression in HTR-8/SVneo cells. N-cadherin mRNA expression was downregulated in PE placental tissues and was positively correlated with SNHG5 expression. Both overexpression of miR-26a-5p and knockdown of N-cadherin suppressed HTR-8/SVneo cell invasion and migration, and also attenuated the effects of SNHG5 on the cellular functions of HTR-8/SVneo cells. In conclusion, our study suggested that SNHG5 promotes trophoblast cell proliferation, invasion, and migration at least partly via regulating the miR-26a-5p/N-cadherin axis.  相似文献   

15.
Preeclampsia (PE) is a heterogeneous syndrome affecting 2% to 8% of all pregnancies and is the world’s leading cause of fetal and maternal morbidity and mortality. In many cases of PE, shallow trophoblast invasion results in inappropriate maternal spiral artery remodeling and impaired placental function. Multiple genes have been implicated in trophoblast invasion, among which are KiSS-1 and GPR54. The gene product of KiSS-1 is metastin, which is a ligand for the receptor GPR54. Both metastin and GPR54 are expressed in the placenta of normal pregnancy and have been implicated in modulating trophoblast invasion through inhibiting migration of trophoblast cells. We have previously reported that the expression level of KiSS-1 was higher in trophoblasts from women with preeclampsia as compared to normal controls. Here, using quantitative RT-PCR, Western blot analysis and immunohistochemistry, we extend our analysis to demonstrate that elevated KiSS-1 expression occurs only in early-onset preeclampsia (ePE) and not late-onset preeclampsia (lPE). However, no difference in the expression levels of GPR54 is observed between ePE, lPE, and normal controls. Further, we show that KiSS-1 expression is also increased in placenta of intrauterine death and birth asphyxia in comparison to normal newborns of ePE and lPE. Our findings suggest that aberrant upregulation of KiSS-1 expression may contribute to the underlying mechanism of ePE as well as birth asphyxia.  相似文献   

16.
Objective: Long non-coding RNAs (lncRNAs) recently have been identified as influential indicators in a variety of malignancies. The aim of the present study was to identify a functional lncRNA LINC00488 and its effects on thyroid cancer in the view of cell proliferation and apoptosis.Methods: In order to evaluate the effects of LINC00488 on the cellular process of thyroid cancer, we performed a series of in vitro experiments, including cell counting kit-8 (CCK-8) assay, EdU (5-ethynyl-2′-deoxyuridine) assay, flow cytometry, transwell chamber assay, Western blot and RT-qPCR. The target gene of LINC00488 was then identified by bioinformatics analysis (DIANA and TargetScan). Finally, a series of rescue experiments was conducted to validate the effect of LINC00488 and its target genes on proliferation, migration, invasion and apoptosis of thyroid cancer.Results: Our findings revealed that LINC00488 was highly expressed in thyroid cancer cell lines (BCPAP, BHP5-16, TPC-1 and CGTH-W3) and promoted the proliferation, migration and invasion, while inhibited the apoptosis of thyroid cancer cells (BCPAP and TPC-1). The results of bioinformatics analysis and dual luciferase reporter gene assay showed that LINC00488 could directly bind to miR-376a-3p and down-regulated the expression level of miR-376a-3p. In addition, Paraoxonase-2 (PON2) was a target gene of miR-376a-3p and negatively regulated by miR-376a-3p. Rescue experiment indicated that LINC00488 might enhance PON2 expression by sponging miR-376a-3p in thyroid cancer.Conclusion: Taken together, our study revealed that lncRNA LINC00488 acted as an oncogenic gene in the progression of thyroid cancer via regulating miR-376a-3p/PON2 axis, which indicated that LINC00488-miR-376a-3p-PON2 axis could serve as novel biomarkers or potential targets for the treatment of thyroid cancer.  相似文献   

17.
Long noncoding RNAs (lncRNAs) are characterized as a type of noncoding RNAs over 200 nucleotides with little or none protein-coding potential. In the past years, lncRNAs have been proved to participant in many physiological and pathological processes. However, the role of lncRNAs in colorectal cancer (CRC) still needs more attentions. In our study, we found that lncBRM was highly expressed in CRC samples and the expression level of lncBRM was correlated with metastasis and advanced stage in CRC patients. And also, we showed that high expression of lncBRM predicted poor prognosis. Furthermore, we found that knockdown of lncBRM impaired the proliferation, migration and invasion of CRC cells while overexpressing of lncBRM promotes the proliferation, migration and invasion of CRC cells. Mechanically, we found that lncBRM served as a sponge of miR-204-3p that targeted TPT1. Highly expressed TPT1 can promote the proliferation, migration and invasion of CRC cells. In conclusion, we found that lncBRM was highly expressed in CRC and sponged miR-204-3p to modulate the expression of TPT1.  相似文献   

18.
Despite progress in diagnostics and treatment for preeclampsia, it remains the foremost cause of maternal and foetal perinatal morbidity and mortality worldwide. Over recent years, various lines of evidence have emphasized long non‐coding RNAs (lncRNAs) which function as an innovative regulator of biological behaviour, as exemplified by proliferation, apoptosis and metastasis. However, the role of lncRNAs has not been well described in preeclampsia. Here, we identified a lncRNA, PVT1, whose expression was down‐regulated in qRT‐PCR analyses in severe preeclampsia. The effects of PVT1 on development were studied after suppression and overexpression of PVT1 in HTR‐8/SVneo and JEG3 cells. PVT1 knockdown notably inhibited cell proliferation and stimulated cell cycle accumulation and apoptosis. Exogenous PVT1 significantly increased cell proliferation. Based on analysis of RNAseq data, we found that PVT1 could affect the expression of numerous genes, and then investigated the function and regulatory mechanism of PVT1 in trophoblast cells. Further mechanistic analyses implied that the action of PVT1 is moderately attributable to its repression of ANGPTL4 via association with the epigenetic repressor Ezh2. Altogether, our study suggests that PVT1 could play an essential role in preeclampsia progression and probably acts as a latent therapeutic marker; thus, it might be a useful prognostic marker when evaluating new therapies for patients with preeclampsia.  相似文献   

19.
Previous research has reported that IGFBP7 functions as a tumor suppressor gene in different tumors, but its role in the trophoblast has not been elucidated. In this research, we studied the regulation mechanism of IGFBP7 in trophoblast proliferation and invasion in HTR-8 and JEG-3 cell lines. We found that IGFBP7 was abundantly expressed in normal human syncytiotrophoblast tissue samples but that this was lacking in hydatidiform moles. The proliferation and invasion capacities of HTR-8 and JEG-3 cells were significantly inhibited by recombinant IGFBP7. Estrogen (E2) stimulated the expression of IGFBP7 at a concentration of 5–10 ng/mL. This stimulation was inhibited by the estrogen receptor antagonist Fulvestrant (ICI182.780) and a TGFβ-neutralizing antibody. In conclusion, our data reveals that estrogen stimulates the expression of IGFBP7 through estrogen receptors and TGFβ. The expression of IGFBP7 could be stimulated by TGFβ in a dose-dependent manner and inhibited by IFNγ in HTR-8 and JEG-3 cells. IGFBP7 could also inhibit the phosphorylation of ERK and the expression of PCNA, MMP2 and MMP9 in HTR-8 and JEG-3 cells. These findings suggest that IGFBP7 is a key regulator of E2-induced trophoblast proliferation and invasion.  相似文献   

20.
《Reproductive biology》2023,23(1):100735
Placenta accreta spectrum (PAS), an emerging health issue worldwide, is the major causative factor of maternal morbidity and mortality in modern obstetrics, but limited studies have contributed to our understanding of the molecular biology of PAS. This study addressed the expression of AGGF1 and its specific role in the etiology of PAS. The expression of AGGF1 in the placentas of PAS was determined by quantitative PCR, western blot and immunohistochemistry. CCK-8 assay, wound healing assay, Transwell invasion assay and flow cytometry assay were performed to monitor cell proliferation, migration, invasion and apoptosis. The interaction between miR-1296–5p and AGGF1 was detected by dual-luciferase reporter gene assay. Results showed that the mRNA and protein expression of AGGF1 was decremented in placental tissues of PAS patients, compared with samples from women with placenta previa and normal pregnant women. Downregulation of AGGF1 promoted cell proliferation, invasion and migration, inhibited apoptosis in vitro, decreased P53 and Bax expression, and simultaneously increased Bcl-2 expression, whereas overexpression of AGGF1 had the opposite results. Additionally, the dual-luciferase assay confirmed AGGF1 as a target gene of miR-1296–5p in placental tissues of PAS. Particularly, miR-1296–5p fostered HTR8/SVneo cell proliferation, invasion, repression of apoptosis and regulation of P53 signaling axis by downregulating AGGF1 expression. Collectively, our study accentuated that downregulation of placental AGGF1 promoted trophoblast over-invasion by mediating the P53 signaling pathway under the regulation of miR-1296–5p.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号