首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
miR-340能够促进癌细胞的增殖和侵袭,但是在结直肠癌中miR-340如何调控癌症的发生与发展鲜有报道.本研究探究miR-340在结直肠癌细胞中的生物学功能和靶基因调控机制.首先通过RT-qPCR检测不同的结直肠癌细胞株中miR-340的表达水平,再利用过表达和抑制miR-340,分别转染COLO-205细胞,以CC...  相似文献   

3.
4.
5.
6.
Circular RNAs were recently identified as a novel type of noncoding RNAs. An increasing number of reports have demonstrated their essential regulatory roles in various biological processes and human diseases, including cancer. However, the role of circRNA in cervical cancer (CC) remains largely unknown. In the current study, we investigated the physiological functions of circ_0067934 during CC development and progression. We found that circ_0067934 was overexpressed in CC tissues and cell lines. Circ_0067934 upregulation was associated with advanced stage, lymph node metastasis, and poor prognosis in CC patients. Knockdown of circ_0067934 suppressed the proliferation, colony formation, migration, invasion, and epithelial-mesenchymal transition of CC cells in vitro. Circ_0067934 loss also inhibited CC tumor growth in vivo. Mechanistically, silencing circ_0067934 increased miR-545 expression. MiR-545 repressed EIF3C expression through targeting its 3′-untranslated region. MiR-545 suppressed the proliferation, migration, and invasion of CC cells, whereas restoration of EIF3C could rescue the effects of circ_0067934 knockdown. Taken together, our findings revealed that circ_0067934 promotes CC progression via miR-545/EIF3C axis. Our study may provide a new insight into the pathogenesis of CC.  相似文献   

7.
Cervical cancer (CC) is a highly fatal gynecological malignancy due to its high metastasis and recurrence rate. Circular RNA (circRNA) has been regarded as a regulator of CC. However, the underlying molecular mechanism of circ_0005615 in CC remains unclear. The levels of circ_0005615, miR-138-5p, and lysine demethylase 2A (KDM2A) were measured using qRT-PCR or western blot. Cell proliferation was assessed by Cell Counting Kit-8, 5-ethynyl-2′-deoxyuridine, and colony formation experiments. Cell invasion and migration were tested by transwell assay and wound healing assay. Flow cytometry and Caspase-Glo 3/7 Assay kit were used to analyze cell apoptosis. The expression of proliferation-related and apoptosis-related markers was detected by western blot. The binding relationships among circ_0005615, miR-138-5p, and KDM2A were verified by dual-luciferase reporter assay or RNA immunoprecipitation assay. Xenograft assay was applied to detect the effect of circ_0005615 in vivo. Circ_0005615 and KDM2A were upregulated, while miR-138-5p was downregulated in CC tissues and cells. Circ_0005615 knockdown retarded cell proliferation, migration, and invasion, while promoting apoptosis. Besides, circ_0005615 sponged miR-138-5p, and miR-138-5p could target KDM2A. miR-138-5p inhibitor reversed the regulation of circ_0005615 knockdown on CC cell growth and metastasis, and KDM2A overexpression also abolished the inhibitory effect of miR-138-5p on CC cell growth and metastasis. In addition, we also discovered that circ_0005615 silencing inhibited CC tumor growth in vivo. Circ_0005615 acted as a tumor promoter in CC by regulating the miR-138-5p/KDM2A pathway.  相似文献   

8.
摘要 目的:通过实验探究miR-142靶向高迁移率族蛋白1(high-mobility group box 1 protein,HMGB1)对宫颈癌(cervical cancer,CC)细胞生物学行为的影响及其潜在的作用机制。方法:采用实时荧光定量PCR(RT-PCR)和蛋白质免疫印迹法(Western Blot)检测CC组织和正常组织中miR-142和HMGB1 mRNA及蛋白表达水平,采用荧光素酶报告实验分析miR-142与HMGB1的靶向关系,CCK-8法检测CC细胞生存能力,克隆形成实验检测CC细胞增殖能力,划痕修复实验检测CC细胞迁移能力,基质胶侵袭实验检测CC细胞侵袭能力。结果:CC组miR-142 mRNA和蛋白表达水平显著低于正常组(P<0.05),HMGB1 mRNA和蛋白表达水平显著高于正常组(P<0.05),且CC癌组织中miR-142和HMGB1 mRNA和蛋白表达水平均呈显著负相关(r=-0.399,P=0.002;r=-0.429,P=0.001);miR-142与HMGB1存在靶向关系;CCK-8法实验、克隆形成实验、划痕修复实验和基质胶侵袭实验结果显示,miR-142 mimic组细胞生存、增殖、迁移和侵袭能力显著低于miR-NC组(P<0.05),miR-142 inhibitor组细胞生存、增殖、迁移和侵袭能力显著高于miR-NC组;Western Blot实验结果显示,HMGB1过表达时miR-142 mimic+plasmid组HMGB1蛋白表达水平显著高于miR-142 mimic+control plasmid组(P<0.05),显著低于miR-NC+plasmid组(P<0.05);CCK-8法实验、克隆形成实验、划痕修复实验和基质胶侵袭实验结果显示,HMGB1过表达时miR-142 mimic+plasmid组细胞生存、增殖、迁移和侵袭能力显著高于miR-142 mimic+control plasmid组(P<0.05),显著低于miR-NC+plasmid组(P<0.05)。结论:miR-142可通过靶向负调控HMGB1表达,进而抑制CC细胞生存、增殖、迁移和侵袭。  相似文献   

9.
10.
《Reproductive biology》2022,22(1):100600
Circular RNAs (circRNAs) have been identified as critical regulators in human cancers, including cervical cancer (CC). However, the precise action of circ_0084904 in cervical carcinogenesis remains to be elucidated. The levels of circ_0084904, microRNA (miR)-802, and Mal, T cell differentiation protein 2 (MAL2) were checked by quantitative real-time PCR (qRT-PCR) or western blot. Ribonuclease R (RNase R) and subcellular localization assays were used to detect the stability and localization of circ_0084904, respectively. Cell colony formation ability was assessed by colony formation assay. Cell cycle and apoptosis were detected by flow cytometry. Cell migration and invasion abilities were gauged by transwell assay. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were applied to determine the direct relationship between miR-802 and circ_0084904 or MAL2. The xenograft experiments were performed to evaluate the role of circ_0084904 in tumor growth in vivo. Circ_0084904 was markedly up-regulated in CC tissues and cell lines. Silencing endogenous circ_0084904 impeded cell colony formation, cell cycle progression, migration, invasion, epithelial-mesenchymal transition (EMT), and promoted apoptosis in vitro, as well as diminished tumor growth in vivo. Mechanistically, circ_0084904 targeted miR-802, and the effects of circ_0084904 silencing were mediated by miR-802. MAL2 was directly targeted and inhibited by miR-802, and MAL2 was a functional target of miR-802. Moreover, circ_0084904 modulated MAL2 expression via miR-802. Our study identified circ_0084904 as a novel oncogenic driver in CC depending on the modulation of the miR-802/MAL2 axis, establishing the notion that silencing of circ_0084904 might represent a promising targeted therapy for CC.  相似文献   

11.
Overexpression of leucine aminopeptidase 3 (LAP3) is involved in proliferation, migration, and invasion of several tumor cells and plays a crucial role in tumor metastasis. However, the related mechanism remains unknown. In this study, we used MDA-MB-231 and MCF7 breast cancer cell lines to explore the role of LAP3 in the regulation of cancer cell migration and invasion by employing the natural LAP3 inhibitor bestatin and a lentivirus vector that overexpresses or knocks down LAP3. Bestatin inhibited tumor cell migration and invasion in a dose-dependent manner. Western blot assay showed that bestatin and knockdown of LAP3 upregulated phosphorylation of Hsp27 and downregulated expression of fascin. Phosphorylation of Akt and expression of matrix metalloproteinase-2/9 can also be downregulated. LAP3 overexpression showed the opposite results. Immunohistochemistry analysis was conducted to detect expression levels of LAP3 in breast cancer tissues. High LAP3 expression was correlated with the grade of malignancy. Findings of this study uncovered the molecular mechanism of LAP3 on breast cancer metastasis and indicated that LAP3 may act as a potential antimetastasis therapeutic target.  相似文献   

12.
13.
14.
NEAT1 is an important tumor oncogenic gene in various tumors. Nevertheless, its involvement remains poorly studied in cervical cancer. Our study explored the functional mechanism of NEAT1 in cervical cancer. NEAT1 level in several cervical cancer cells was quantified and we found NEAT1 was greatly upregulated in vitro. NEAT1 knockdown inhibited cervical cancer development through repressing cell proliferation, colony formation, capacity of migration, and invasion and also inducing the apoptosis. For another, microRNA (miR)-133a was downregulated in cervical cancer cells and NEAT1 negatively modulated miR-133a expression. Subsequently, we validated that miR-133a functioned as a potential target of NEAT1. Meanwhile, SOX4 is abnormally expressed in various cancers. SOX4 was able to act as a downstream target of miR-133a and silencing of SOX4 can restrain cervical cancer progression. In addition, in vivo assays were conducted to prove the role of NEAT1/miR-133a/SOX4 axis in cervical cancer. These findings implied that NEAT1 served as a competing endogenous RNA to sponge miR-133a and regulate SOX4 in cervical cancer pathogenesis. To sum up, it was implied that NEAT1/miR-133a/SOX4 axis was involved in cervical cancer development.  相似文献   

15.
MicroRNAs play important roles in the development and progression of non-small cell lung cancer (NSCLC). miR-16 functions as a tumor-suppressor and is inhibited in several malignancies. Herein, we validated that miR-16 is downregulated in NSCLC tissue samples and cell lines. Ectopic expression of miR-16 significantly inhibited cell proliferation and colony formation. Moreover, miR-16 suppressed cell migration and invasion in NSCLC cells. Hepatoma-derived growth factor (HDGF) was found to be a direct target of miR-16 in NSCLC cell lines. Rescue experiments showed that the suppressive effect of miR-16 on cell proliferation, colony formation, migration, and invasion is partially mediated by inhibiting HDGF expression. This study indicates that miR-16 might be associated with NSCLC progression, and suggests an essential role for miR-16 in NSCLC.  相似文献   

16.
Advanced prostate cancers are known to acquire not only invasive capabilities but also significant resistance to chemotherapy-induced apoptosis. To understand how microRNAs (miRNAs) may contribute to prostate cancer resistance to apoptosis, we compared microRNA expression profiles of a benign prostate cancer cell line WPE1-NA22 and a highly malignant WPE1-NB26 cell line (derived from a common lineage). We found that miR-205 and miR-31 are significantly downregulated in WPE1-NB26 cells, as well as in other cell lines representing advanced-stage prostate cancers. Antiapoptotic genes BCL2L2 (encoding Bcl-w) and E2F6 are identified as the targets of miR-205 and miR-31, respectively. By downregulating Bcl-w and E2F6, miR-205 and miR-31 promote chemotherapeutic agents-induced apoptosis in prostate cancer cells. The promoter region of the miR-205 gene was cloned and was found to be hypermethylated in cell lines derived from advanced prostate cancers, contributing to the downregulation of the gene. Treatment with DNA methylation inhibitor 5-aza-2′-deoxycytidine induced miR-205 expression, downregulated Bcl-w, and sensitized prostate cancer cells to chemotherapy-induced apoptosis. Thus, downregulation of miR-205 and miR-31 has an important role in apoptosis resistance in advanced prostate cancer.  相似文献   

17.
MicroRNAs (miRNAs) have been shown to be involved in different aspects of cancer biology including tumor angiogenesis. In this study, we identified that two miRNAs, miR-199a and miR-125b were downregulated in ovarian cancer tissues and cell lines. Overexpression of miR-199a and miR-125b inhibited tumor-induced angiogenesis associated with the decrease of HIF-1α and VEGF expression in ovarian cancer cells. Moreover, the levels of miR-199a and miR-125b were negatively correlated with VEGF mRNA levels in ovarian tissues. We further showed that direct targets of miR-199a and miR-125b HER2 and HER3 were functionally relevant. Forced expression of HER2 and HER3 rescued miR-199a- and miR-125b-inhibiting angiogenesis responses and Akt/p70S6K1/HIF-1α pathway. This study provides a rationale for new therapeutic approach to suppress tumor angiogenesis using miR-199a, miR-125b, or their mimics for ovarian cancer treatment in the future.  相似文献   

18.
Ovarian cancer characterizes as the fourth leading consequence of death associated with cancer for women. Accumulating evidence underscores the vital roles of microRNAs (miRNAs) in preventing ovarian cancer development. Besides, induction of the phosphatidylinositol-3 kinase/serine/threonine kinase (PI3K/Akt) pathway associated with the ovarian cancer cell migration and invasion. The study aims to examine the effects of miR-15b on the proliferation, apoptosis, and senescence of human ovarian cancer cells by binding to lysophosphatidic acid receptor 3 (LPAR3) with the involvement of the PI3K/Akt pathway. The positive expression of LPAR3 protein was detected by immunohistochemistry. Then the interaction between miR-15b and LPAR3 was examined. The possible role of miR-15b in ovarian cancer was explored using gain- and loss-of-function experiments. Subsequently, the functions of miR-15b on PI3K/Akt pathway, proliferation, migration, invasion, senescence and apoptosis of ovarian cancer cells were assessed. Furthermore, in vivo tumorigenicity assay in nude mice was performed. LPAR3 was overexpressed, whereas miR-15b was poorly expressed in ovarian cancer tissues. LPAR3 is a direct target of miR-15b. Restored miR-15b promoted Bax expression, apoptosis, and senescence, inhibited expression of LPAR3 and Bcl-2, the extent of PI3K and Akt phosphorylation, as well as ovarian cancer cell proliferation, migration, and invasion. Further, tumor growth was observed to be prevented by miR-15b overexpression. Collectively, our study demonstrates that miR-15b represses the proliferation and drives the senescence and apoptosis of ovarian cancer cells through the suppression of LPAR3 and the PI3K/Akt pathway, highlighting an antitumorigenic role of miR-15b.  相似文献   

19.
MicroRNA (miRNA) is a form of small noncoding RNA that regulates the expression of genes either by inhibiting mRNA translation or by inducing its degradation. Small microRNA play important roles in regulating a large number of cellular processes, including development, proliferation and apoptosis. This study examined the biological functions of miR-205 as a tumor suppressor in KB oral cancer cells. The results showed that miR-205 expression was significantly lower in KB oral cancer cells than in human normal oral keratinocytes. Furthermore, the miR-205 over-expressed in KB oral cancer cells increased the cell cytotoxicity and induced apoptosis through the activation of caspase-3/-7. The transfection of miR-205 into KB oral cancer cells strongly induced IL-24, a well known cytokine that acts as a tumor suppressor in a range of tumor tissues. In addition, miR-205 targeted the IL-24 promoter directly to induce gene expression. Overall, miR-205 has significant therapeutic potential to turn on silenced tumor suppressor genes by targeting them with miRNA.  相似文献   

20.
Previous studies have reported that microRNAs function as key regulators in tumor development and progression. This study aims to investigate the functional effects of miR-503 expression in cervical cancer (CC) progression. We detected the expression of miR-503 in CC tissues and cell lines using quantitative real-time polymerase chain reaction. Synthesized miR-503 mimics or inhibitors were used to upregulate or downregulate the expression of miR-503 in HeLa or SiHa cells. Cell Counting Kit-8 and colony formation assay were used to detect the ability of cell proliferation. Furthermore, luciferase assay and Western blot were applied to confirm the target of miR-503 in CC cells. Here, we demonstrated that miR-503 expression was significantly downregulated in CC tissues, compared with adjacent normal tissues. miR-503 expression was significantly associated with tumor size and International Federation of Gynecology and Obstetrics stage. Furthermore, increasing miR-503 expression in CC cells dramatically inhibited cell proliferation, colony formation ability of CC. However, reducing miR-503 had reverse effects on these malignant behaviors. Moreover, we demonstrated that miR-503 inhibited cell proliferation by targeting AKT2 3′-untranslated region and affected its expression. Overexpression of AKT2 rescued the effects induced by miR-503 on cell proliferation. Therefore, our results indicated that miR-503 may serve as a tumor suppressor in CC and provide a potential value for CC treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号