首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.

Background

Hypoglycemia is associated with increased mortality rate in patients with diabetes. The underlying mechanisms may involve reduced myocardial tolerance to ischemia and reperfusion (IR) or reduced capacity for ischemic preconditioning (IPC). As IPC is associated with increased myocardial glucose uptake (MGU) during reperfusion, cardioprotection is linked to glucose metabolism possibly by O-linked β-N-acetylglucosamine (O-GlcNAc). We aimed to investigate the impact of hypoglycemia in hearts from animals with diabetes on myocardial IR tolerance, on the efficacy of IPC and whether modulations of MGU and O-GlcNAc levels are involved in the underlying mechanisms.

Methods

In a Langendorff model using diabetic ZDF (fa/fa) and non-diabetic (fa/+) rats (n = 6–7 in each group) infarct size (IS) was evaluated after 40 min of global ischemia and 120 min reperfusion during hypoglycemia [(glucose) = 3 mmol/l] and normoglycemia [(glucose) = 11 mmol/l]. Myocardial glucose uptake and O-GlcNAc levels were evaluated during reperfusion. IPC was induced by 2 × 5 min of global ischemia prior to index ischemia.

Results

IS increased in hearts from animals with (p < 0.01) and without (p < 0.01) diabetes during hypoglycemia compared to normoglycemia. IPC reduced IS during normoglycemia in both animals with (p < 0.01) and without (p < 0.01) diabetes. During hypoglycemia, however, IPC only reduced IS in hearts from animals with diabetes (p < 0.05). IPC increased MGU during reperfusion and O-GlcNAc levels in animals with diabetes during hypo- (MGU: p < 0.05, O-GlcNAc: p < 0.05) and normoglycemia (MGU: p < 0.01, O-GlcNAc: p < 0.05) and in animals without diabetes only during normoglycemia (MGU: p < 0.05, O-GlcNAc: p < 0.01).

Conclusions

Hypoglycemia increases myocardial susceptibility to IR injury in hearts from animals with and without diabetes. In contrast to hearts from animals without diabetes, the hearts from animals with diabetes are amenable to cardioprotection during hypoglycemia. In parallel with IPC induced cardioprotection, MGU and O-GlcNAc levels increase suggesting that increased MGU and O-GlcNAc levels are involved in the mechanisms of IPC.
  相似文献   

2.
Functional & Integrative Genomics - Myocardial ischemia–reperfusion injury (MI/RI) is a leading cause of death globally. Whereas some long noncoding RNAs (lncRNAs) are known to...  相似文献   

3.
Hui Tao  Min Nuo  Su Min 《Cytotechnology》2018,70(1):169-176
Sufentanil, a lipophilic opioid, is the most frequently used clinical drug for ischemic heart disease. The effects of sufentanil on MAPK signaling in ischemic heart disease were explored. The effects of sufentanil on ischemia–reperfusion (IR)-induced myocardial injury in a rat model were examined. The serum levels of CK, LDH, MDA and SOD, and the activities of Na+–K+-ATPase and Ca2+–Mg2+-ATPase were measured. The levels of total and phosphorylated ERK1/2, JNK, and p38 were measured by western blotting in the heart, and the myocardial H9C2 cell line was studied. Using the Cell Counting Kit-8, the growth rate of H9C2 cells affected by sufentanil was studied. The serum levels of CK, LDH and MDA were higher in the IR group than in the SO and SUF groups. The SOD level, as well as the activities of Na+–K+-ATPase and Ca2+–Mg2+-ATPase, were lower in the SO and SUF groups than in the IR group. The phosphorylated ERK1/2 level was lower in the IR group than in the SO and SUF groups. The growth rate of H9C2 cells increased with the concentration of sufentanil and the exposure time. The phosphorylated ERK level was upregulated by 4–12 h of sufentanil exposure, indicating that the effects were time-dependent. Furthermore, an inhibition of ERK signaling by chemical inhibition suppressed the sufentanil-mediated increase in the growth rate of H9C2 cells. Sufentanil appears to be beneficial for cases of worsening ischemic heart disease. Further studies are necessary before a clinical application is considered.  相似文献   

4.
Toll-like receptor 4 (TLR4) and its ligand high mobility group box 1 (HMGB1), are known for playing central roles in ischemia–reperfusion injury in myocardium. However, the detailed mechanisms of TLR4 and HMGB1 are not fully understood. The aim of this study was to investigate the effects and possible mechanisms of the HMGB1–TLR4 axis and cardiomyocyte apoptosis on myocardial ischemic damage. Artificial oxygen ventilated anesthetized C3H/HeN mice and C3H/HeJ mice were subjected to 30 min of left anterior descending coronary artery occlusion followed by 6 h of reperfusion. The myocardial infarct size, HMGB1 levels, apoptosis index, Bax, Bcl-2 and TNF-α mRNA levels were assessed. The results showed that a lowered amount of cardiomyocyte apoptosis and infarct size in the myocardium of TLR4-mutant mice after myocardial I/R and that TLR4 deficiency notably inhibited the expression of HMGB1 and TNF-a, both of which were up-regulated by ischemia/reperfusion. These findings suggest that the HMGB1–TLR4 axis plays a pathogenic role in triggering cardiomyocyte apoptosis during myocardial I/R injury and that the possible mechanism for this process is the result of released cytokines and inflammatory response involved in the HMGB1/TLR4-related pathway.  相似文献   

5.
Myocardial ischemia and reperfusion injury (MIRI) includes major drawbacks, such as excessive formation of free radicals and also overload of calcium, which lead to cell death, tissue scarring, and remodeling. The current study aims to explore whether KRT1 silencing may ameliorate MIRI via the Notch signaling pathway in mouse models. Myocardial tissues were used for the determination of the positive rate of KRT1 protein expression, apoptosis of myocardial cells, creatine kinase (CK) and lactate dehydrogenase (LDH) expression, expression of related biomarkers as well as myocardial infarction area. The transfected myocardial cells were treated with KRT1-siRNA, Jagged1, and DAPT (inhibitor of Notch-1 signaling pathway). The expression of KRT1, NICD, Hes1, Bcl-2, and Bax protein was detected. The MTT assay was applied for cell proliferation and flow cytometry was used for cell apoptosis. Mice with MIRI had a higher positive rate of KRT1 protein expression, apoptosis of myocardial cells, CK and LDH expression, myocardial infarction area, increased expression of MDA, NO, SDH, IL-1, IL-6, TNF-α, CRP, KRT1, Bax protein, CK, and LDH, and decreased expression of SOD, NICD, Hes1, and Bcl-2. The downregulation of KRT1 led to decreased expression of KRT1 and Bax protein, increased expression of NICD, Hes1, and Bcl-2, decreased cell apoptosis, and improved cell proliferation. The inhibition of the Notch signaling pathway leads to reduced expression of Bax, increased expression of NICD, Hes1, and Bcl 2, and also decreased cell apoptosis and increased cell proliferation. Our data conclude that KRT1 silencing is able to make MIRI better by activating the Notch signaling pathway in mice.  相似文献   

6.
Kidney ischemia–reperfusion injury (IRI) is common during transplantation. IRI is characterised by inflammation and thrombosis and associated with acute and chronic graft dysfunction. P-selectin and its ligand PSGL-1 are cell adhesion molecules that control leukocyte-endothelial and leukocyte-platelet interactions under inflammatory conditions. CD39 is the dominant vascular nucleotidase that facilitates adenosine generation via extracellular ATP/ADP-phosphohydrolysis. Adenosine signalling is protective in renal IRI, but CD39 catalytic activity is lost with exposure to oxidant stress. We designed a P-selectin targeted CD39 molecule (rsol.CD39-PSGL-1) consisting of recombinant soluble CD39 that incorporates 20 residues of PSGL-1 that bind P-selectin. We hypothesised that rsol.CD39-PSGL-1 would maintain endothelial integrity by focusing the ectonucleotidase platelet-inhibitory activity and reducing leukocyte adhesion at the injury site. The rsol.CD39-PSGL-1 displayed ADPase activity and inhibited platelet aggregation ex vivo, as well as bound with high specificity to soluble P-selectin and platelet surface P-selectin. Importantly, mice injected with rsol.CD39-PSGL-1 and subjected to renal IRI showed significantly less kidney damage both biochemically and histologically, compared to those injected with solCD39. Furthermore, the equivalent dose of rsol.CD39-PSGL-1 had no effect on tail template bleeding times. Hence, targeting recombinant CD39 to the injured vessel wall via PSGL-1 binding resulted in substantial preservation of renal function and morphology after IRI without toxicity. These studies indicate potential translational importance to clinical transplantation and nephrology.  相似文献   

7.
Wu Q  Zhao Z  Sun H  Hao YL 《生理学报》2008,60(3):327-332
The aim of the present study is to investigate the role of beta(2)-adrenoreceptor (beta(2)-AR) in ischemic preconditioning (IP) in isolated rat heart model of ischemia/reperfusion (I/R). Sprague-Dawley rat hearts were quickly removed, mounted on Langendorff apparatus, and perfused with Krebs-Henseleit (KH) solution. After the initial stabilization period, the rats were randomly divided into 6 groups including control group (perfused for an additional 20 min), IP group (4 cycles of 5 min of ischemia followed by 5 min of reflow), isoproterenol (ISO) group (10 nmol/L ISO perfusion for 5 min followed by 5 min washout), IP + ICI118551 group (55 nmol/L ICI118551 perfusion for 5 min before and throughout IP), ISO + ICI118551 group (55 nmol/L ICI118551 perfusion for 5 min before and throughout ISO treatment), ICI118551 group (55 nmol/L ICI118551 perfusion for 20 min). After these treatments, all hearts were followed by 30 min of no-flow ischemia and 30 min of reperfusion. A computer-based electrophysiological recorder system was used to measure changes of the maximal rate of pressure increase in systole phase (+dp/dt(max)), maximal rate of pressure decrease in diastole phase (-dp/dt(max)), and difference of left ventricular pressure (DeltaLVP). Then cardiomyocytes from these hearts were isolated by 5 min of Ca(2+)-free buffer perfusion and 25 min of collagenase perfusion. The ventricles were chopped and filtered. The myocytes were resuspended in KB buffer. The contraction and the viability of cardiomyocytes were measured. Lactate dehydrogenase (LDH) concentration in coronary effluent was assayed with assay kit. The results showed that both IP and ISO significantly increased the values of +/-dp/dt(max), DeltaLVP, the contraction and viability of cardiomyocytes, shortened the time-to-peak contraction (TTP), and decreased the release of LDH in coronary effluent. ICI118551, a selective beta(2)-AR antagonist, blocked these effects. Either the time-to-50% relaxation (R(50)) or the time-to-100% relaxation (R(100)) had no significant differences between groups. Our results indicate that the cardioprotection of IP was mediated by beta(2)-AR in isolated rat hearts subjected to I/R injury.  相似文献   

8.
Multiple organ dysfunction syndrome (MODS) is characterized by the development of probably reversible, progressive dysfunction of vital systems in two or more organs, directly undamaged by surgery or other trauma. The organs which have the most common potential dysfunction are lungs, liver, kidneys, heart and gastrointestinal tract. The small intestine is the source of production of proinflammatory mediators leading and contributing to multiorgan failure. The endoplasmic reticulum (ER), after ischemia and post-ischemic reperfusion, is significantly involved in the activation of enterocyte apoptosis. The purpose of this study was to determine the stage of apoptosis in the lungs, initiated through inflammatory response from the small intestine. We analyzed changes in mRNA levels of pro-apoptotic genes Gadd153 (Chop) and anti-apoptotic genes Grp78 (Bip) in the small intestine wall and lung parenchyma. During experimental procedure the rats underwent 60 min of ischemia, caused by complete occlusion of the mesenteric arteria cranialis, with subsequent reperfusion and evaluation after 1 h, 24 h and 30 days (from R1, R24 to R30, respectively, each group n = 8). The gene expression levels were measured using RT-PCR followed by electrophoresis and visualization under UV. In the lungs we detected significantly lower level of expression Grp78 by 45 ± 6.9%. This suggests that ischemic attack and subsequent reperfusion did not promote ER stress in the lungs through induction of Gadd153 expression in the small intestine. There is still no effective approach to the treatment of affected ischemic intestine tissue, to stop the processes with could eventually lead to MODS. Therefore it is necessary to study changes in the damaged tissue at the molecular level and try to suggest possible therapeutic defined routes to the protection of tissue.  相似文献   

9.
Myocardial ischemia–reperfusion (I/R) injury, a major contributor to morbidity and mortality, represents a combination of intrinsic cellular response to ischemia and the extrinsic acute inflammatory response. In the present study, microarray analysis of GSE67308 and GSE50885 identified differentially expressed GPR30 and upstream regulatory miR-2861 and miR-5115 in myocardial I/R. Furthermore, GPR30 was confirmed as a common target gene of miR-2861 and miR-5115, and miR-2861 and miR-5115 inhibited GPR30 expression. Poor expression of GPR30 was identified in the myocardial I/R injury mouse model. Overexpressed GPR30 led to alleviated the pathological conditions, diminished myocardial infarct size and apoptosis of myocardial tissue in mice. Moreover, miR-2861 and miR-5115 were found to be highly expressed in the myocardial I/R injury mouse model and to subsequently accelerate the disease progression. Notably, PR30 curtailed the development of myocardial I/R injury through activation of the mTOR signaling pathway. The key findings suggested that miR-2861 and miR-5115 blocked the activation of the GPR30/mTOR signaling pathway by targeting GPR30, thereby accelerating myocardial I/R injury in mice.  相似文献   

10.
The present study focused on examining the efficacy of feeding a rutin-glucose derivative (G-rutin) to inhibit glycation reactions that can occur in muscle, kidney and plasma proteins of diabetic rats. Both thiobarbituric acid-reactive substance levels and protein carbonyl contents in muscle and kidney were significantly (p < 0.05) reduced in streptozotocin-induced diabetic rats fed G-rutin supplemented diet, compared to diabetic rats fed control diet. The N -fructoselysine content in muscle and kidney, a biomarker of early glycation reaction, was markedly (p < 0.05) increased by diabetes, but significantly (p < 0.05) reduced in diabetic rats fed G-rutin. Advanced glycation end-products (AGEs) in serum and kidney protein were measured by immunoblot using anti-AGE antibody, and were also reduced in diabetic rats fed dietary G-rutin. Feeding G-rutin also slightly inhibited aldose reductase activity in these animals. These results demonstrate for the first time that dietary G-rutin consumption can provide potential health benefits that are related to the inhibition of tissue glycation reactions common to diabetes.  相似文献   

11.
The role of pacing postconditioning (PPC) in the heart protection against ischemia–reperfusion injury is not completely understood. The aim of this study was to investigated if 17-β-estradiol (estrogen, E2), endogenous atrial natriuretic peptide (ANP), endogenous brain natriuretic peptide (BNP), and tumor necrosis factor-alpha (TNF-α) are involved in PPC-mediated protection. Langendorff perfused female Wistar rat hearts were used for this study. Hearts challenged with regional ischemia for 30 min subjected to no further treatment served as a control. The PPC protocol was 3 cycles of 30 s pacing alternated between the right atrium and left ventricle (LV). Protection was assessed by recovery of LV contractility and coronary vascular–hemodynamics. Ischemia induced a significant (P?<?0.05) deterioration in the heart function compared with baseline data. PPC alone or in combination with short-term E2 treatment (E2 infusion at the beginning of reperfusion) significantly (P?<?0.05) improved the heart functions. Short-term E2 treatment post-ischemically afforded protection similar to that of PPC. However, long-term E2 substitution for 6 weeks completely attenuated the protective effects of PPC. Although no changes were noted in endogenous ANP levels, PPC significantly increased BNP expression level and decreased TNF-α in the cardiomyocyte lysate and coronary effluent compared to ischemia and controls. Our data suggested a protective role for short-term E2 treatment similar to that of PPC mediated by a pathway recruiting BNP and downregulating TNF-α. Our study further suggested a bad influence for long-term E2 substitution on the heart as it completely abrogated the protective effects of PPC.  相似文献   

12.
microRNAs (miRs) are essential in the development of heart failure. The aim of this study is to investigate the effect of microRNA-330 (miR-330) on left ventricular remodeling via the TGF-β1/Smad3 signaling pathway by targeting the sex-determining region Y (SRY) in mice with myocardial ischemia–reperfusion injury (MIRI). Differentially expressed gene (DEG) in myocardial ischemia–reperfusion (IR) was screened out and the miR that targeted the DEG was also predicted and verified. A model of MIRI was established to detect the expression of miR-330, SRY, transforming growth factor-β (TGF-β1), and Sekelsky mothers against dpp3 (Smad3). To further investigate the role of miR-330 in MIRI with the involvement of SRY and TGF-β1/Smad3 signaling pathway, the modeled mice were treated with different mimic, inhibitor, or small interfering RNA (siRNA) to observe the changes of the related gene expression, as well as the myocardial infarction size and volume of myocardial collagen. SRY was screened out and verified as a target gene of miR-330. The MIRI mice showed enlarged myocardial infarction size, increased volume of myocardial collagen, increased expression of miR-330, TGF-β1 and Smad3, while decreased the expression of SRY. The MIRI mice treated with miR-330 inhibitor showed decreased myocardial infarction size, the volume of myocardial collagen, and expression of TGF-β1 and Smad3 but promoted expression of SRY. Our findings demonstrated that downregulated miR-330 could suppress left ventricular remodeling to inhibit the activation of the TGF-β1/Smad3 signaling pathway via negatively targeting of SRY in mice with MIRI. This can be a potential target in the strategy to attenuate patient suffering.  相似文献   

13.
Liver ischemia/reperfusion (I/R) injury is a serious clinical problem. The reactive oxygen species (ROS) and tumor necrosis factor alpha (TNF-α) are important mediators in liver I/R injury. This study was designed to investigate the effect of preischemic treatment with fenofibrate (Peroxisome proliferator-activated receptor- α agonist) on the oxidative stress and inflammatory response to hepatic I/R injury in rats. Hepatic I/R was induced by clamping the blood supply of the left lateral and median lobes of the liver for 60 min, followed by reperfusion for 4 h. Each animal group was pretreated with a single dose of fenofibrate (50 mg/kg body weight) intraperitoneally 1 h before ischemia. At the end of reperfusion, blood samples and liver tissues were obtained to assess serum alanine aminotransferase (ALT), TNF-α, hepatic malondialdehyde (MDA) and superoxide dismutase activity (SOD). Liver specimens were obtained and processed for light and electron microscopic study. Hepatic I/R induced a significant elevation of serum ALT and TNF-α with significant elevation of hepatic MDA and reduction of SOD activity. Histopathological examination revealed hepatic inflammation, necrosis and apoptosis. Preischemic treatment with fenofibrate at a dose of 50 mg/kg significantly attenuated the biochemical and structural alterations of I/R-induced liver injury.  相似文献   

14.

Background

Cytochrome c (Cyt c) is a mobile component of the electron transport chain (ETC.) which contains a tightly coordinated heme iron. In pathologic settings, a key ligand of the cyt c's heme iron, methionine (Met80), is oxidized allowing cyt c to participate in reactions as a peroxidase with cardiolipin as a target. Myocardial ischemia (ISC) results in ETC. blockade and increased production of reactive oxygen species (ROS). We hypothesized that during ischemia–reperfusion (ISC-REP); ROS generation coupled with electron flow into cyt c would oxidize Met80 and contribute to mitochondrial-mediated ETC. damage.

Methods

Mitochondria were incubated with specific substrates and inhibitors to test the contributions of ROS and electron flow into cyt c. Subsequently, cyt c and cardiolipin were analyzed. To test the pathophysiologic relevance, mouse hearts that underwent ISC-REP were tested for methionine oxidation in cyt c.

Results

The combination of substrate/inhibitor showed that ROS production and electron flux through cyt c are essential for the oxidation of methionine residues that lead to cardiolipin depletion. The content of cyt c methionine oxidation increases following ISC-REP in the intact heart.

Conclusions

Increase in intra-mitochondrial ROS coupled with electron flow into cyt c, oxidizes cyt c followed by depletion of cardiolipin. ISC-REP increases methionine oxidation, supporting that cyt c peroxidase activity can form in the intact heart.

General significance

This study identifies a new site in the ETC. that is damaged during cardiac ISC-REP. Generation of a neoperoxidase activity of cyt c favors the formation of a defective ETC. that activates signaling for cell death.  相似文献   

15.
Microbial fibrinogenolytic serine proteases find therapeutic applications in the treatment of thrombosis- and hyperfibrinogenemia-associated disorders. However, analysis of structure–function properties of an enzyme is utmost important before its commercial application. In this study, an attempt has been made to understand the structure of a fibrinogenolytic protease enzyme, “Bacifrinase” from Bacillus cereus strain AB01. From the molecular dynamics trajectory analysis, the modelled three-dimensional structure of the protease was found to be stable and the presence of a catalytic triad made up of Asp102, His83 and Ser195 suggests that it is a serine protease. To understand the mechanism of enzyme–substrate and enzyme–inhibitor interactions, the equilibrated protein was docked with human fibrinogen (the physiological substrate of this enzyme), human thrombin and with ten selective protease inhibitors. The Bacifrinase–chymostatin interaction was the strongest among the selected protease inhibitors. The serine protease inhibitor phenyl methane sulphonyl fluoride was found to interact with the Ser134 residue of Bacifrinase. Furthermore, protein–protein docking study revealed the fibrinogenolytic property of Bacifrinase and its interaction with Aα-, Bβ- and Cγ-chains human fibrinogen to a different extent. However, biochemical analysis showed that Bacifrinase did not hydrolyse the γ-chain of fibrinogen. The in silico and spectrofluorometric studies also showed interaction of Bacifrinase with thrombin as well as fibrinogen with a Kd value of 16.5 and .81 nM, respectively. Our findings have shed light on the salient structural features of Bacifrinase and confirm that it is a fibrinogenolytic serine protease.  相似文献   

16.
The ion current to a cylindrical probe is considered with allowance for volume ionization, ion–neutral collisions, and the ion orbital moment. A model based on the molecular dynamics method and applicable in a wide range of plasma parameters (rp/λD= 0.01–100, ri/λD= 0.002–200, νi/ω0i= 0.01–0.05, and Ti/Te = 0?0.01) is proposed A convenient representation of the dependence of the relative ion current density on the Langmuir coefficient β2 and a technique for determining the plasma density from simulation results are offered.  相似文献   

17.
The above article, published online on 09 October 2021 in Wiley Online Library ( wileyonlinelibrary.com ), has been withdrawn by agreement between the journal Editor in Chief, Gening Jiang, and John Wiley & Sons Ltd. The withdrawal has been agreed because the authors have not responded to repeated attempts to contact them to correct and approve the article proofs for publication of the version of record.  相似文献   

18.
19.
The reactivity of the metalloligand [Pt2(μ-S)2(PPh3)4] towards a wide range of platinum(II) and palladium(II) chloride complex substrates [L2MCl2] has been explored, using the technique of electrospray ionisation mass spectrometry to directly analyse reaction solutions. In the majority of cases, products are formed by addition of the ML22+ fragment to the {Pt2S2} core, giving trinuclear species [Pt2(μ-S)2(PPh3)4ML2]2+. The adducts with Pt(diene) [diene=cyclo-octa-1,5-diene (cod), norbornadiene], Pd(cod), Pd(bipy) (bipy=2,2-bipyridine), Pt(PMe3)2 and Pt(PTA)2 (PTA=phosphatriaza-adamantane) moieties were synthesised and characterised on the macroscopic scale, with [Pt2(μ-S)2(PPh3)4Pt(cod)] (BF4)2 and [Pt2(μ-S)2(PPh3)4Pd(bipy)] (PF6)2 also characterised by X-ray diffraction studies. No metal scrambling was found to occur, as has been observed in some previous cases involving the related complexes [Pt2(μ-Se)2(PPh3)4] and [Pt2(μ-S)2(dppe)2] (dppe=Ph2PCH2CH2PPh2). With cis-[PtCl2(SOMe2)2] the species [Pt2(μ-S)2(PPh3)4PtCl(SOMe2)]+ was formed, as a result of the lability of the SOMe2 ligand. With palladium(II)-phosphine systems, the observed product species is dependent on the phosphine; the bulky PPh3 ligand in [PdCl2(PPh3)2] leads primarily to the analogous known species [Pt2(μ-S)2(PPh3)4PdCl(PPh3)]+, and a small amount of the metal-scrambled species [PtPd2S2(PPh3)5Cl]+. In contrast, [PdCl2(PTA)2], containing the small PTA ligand gave [Pt2(μ-S)2(PPh3)4Pd(PTA)2]2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号