首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel class of synthetic, multisite-directed thrombin inhibitors, known as hirunorms, has been described recently. These compounds were designed to mimic the binding mode of hirudin, and they have been proven to be very strong and selective thrombin inhibitors. Here we report the crystal structure of the complex formed by human alpha-thrombin and hirunorm V, a 26-residue polypeptide containing non-natural amino acids, determined at 2.1 A resolution and refined to an R-factor of 0.176. The structure reveals that the inhibitor binding mode is distinctive of a true hirudin mimetic, and it highlights the molecular basis of the high inhibitory potency (Ki is in the picomolar range) and the strong selectivity of hirunorm V. Hirunorm V interacts through the N-terminal tetrapeptide with the thrombin active site in a nonsubstrate mode; at the same time, this inhibitor specifically binds through the C-terminal segment to the fibrinogen recognition exosite. The backbone of the N-terminal tetrapeptide Chg1"-Val2"-2-Nal3"-Thr4" (Chg, cyclohexyl-glycine; 2-Nal, beta-(2-naphthyl)-alanine) forms a short beta-strand parallel to thrombin main-chain residues Ser214-Gly219. The Chg1" side chain fills the S2 subsite, Val2" is located at the entrance of S1, whereas 2-Nal3" side chain occupies the aryl-binding site. Such backbone orientation is very close to that observed for the N-terminal residues of hirudin, and it is similar to that of the synthetic retro-binding peptide BMS-183507, but it is opposite to the proposed binding mode of fibrinogen and of small synthetic substrates. Hirunorm V C-terminal segment binds to the fibrinogen recognition exosite, similarly to what observed for hirudin C-termninal tail and related compounds. The linker polypeptide segment connecting hirunorm V N-and C-terminal regions is not observable in the electron density maps. The crystallographic analysis proves the correctness of the design and it provides a compelling proof on the interaction mechanism for this novel class of high potency multisite-directed synthetic thrombin inhibitors.  相似文献   

2.
The coagulation cascade enzymes thrombin and factor Xa are known to have specificity pockets very similar to those of trypsin and plasmin. However, comparative molecular modeling analysis of the crystal structures of benzamidine–thrombin and benzamidine–trypsin, in conjunction with a docking analysis of 5‐amidinoindole and related inhibitors in both enzymes reveals subtle differences between the specificity sites of the two types of enzymes. Specifically, thrombin and factor Xa, which have an alanine residue at position 190, exhibit increased activities for the rigid and more bulky bicyclic derivatives of benzamidine (e.g. amidinobenzofuran, amidinothiophene and amidinoindole), because of additional hydrophobic and H‐bond interactions between the inhibitors and the specificity sites, whereas enzymes with a serine residue at position 190, like trypsin and plasmin, exhibit little difference in activity among the same set of compounds because of the orientational restriction imposed on the inhibitors by Ser190, which forms an additional H‐bond with the amidino group of the inhibitors. Enzymes of both groups show similar responses to the flexible aminobenzamidine since the smaller size and the rotatable anilino group of the inhibitor would allow the inhibitor to achieve favorable electrostatic interactions with both groups of enzymes. 5‐Amidinoindole is the most dramatic example of the rigid bicyclic type inhibitor. Based on our docking analysis, we propose that a selective H‐bond with the hydroxyl group of the catalytic Ser195 and the subtle differences in steric fit imposed by Ala/Ser at position 190 explain the high potency and selectivity of 5‐amidinoindole for thrombin and factor Xa. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
The interaction of domains of the Kazal-type inhibitor protein dipetalin with the serine proteinases thrombin and trypsin is studied. The functional studies of the recombinantly expressed domains (Dip-I+II, Dip-I and Dip-II) allow the dissection of the thrombin inhibitory properties and the identification of Dip-I as a key contributor to thrombin/dipetalin complex stability and its inhibitory potency. Furthermore, Dip-I, but not Dip-II, forms a complex with trypsin resulting in an inhibition of the trypsin activity directed towards protein substrates. The high resolution NMR structure of the Dip-I domain is determined using multi-dimensional heteronuclear NMR spectroscopy. Dip-I exhibits the canonical Kazal-type fold with a central alpha-helix and a short two-stranded antiparallel beta-sheet. Molecular regions essential for inhibitor complex formation with thrombin and trypsin are identified. A comparison with molecular complexes of other Kazal-type thrombin and trypsin inhibitors by molecular modeling shows that the N-terminal segment of Dip-I fulfills the structural prerequisites for inhibitory interactions with either proteinase and explains the capacity of this single Kazal-type domain to interact with different proteinases.  相似文献   

4.
Atherosclerotic plaque formation is a dynamic process involving repeated injury and inflammation of the endothelium. We have demonstrated previously that thrombin and tryptase stimulation of human coronary artery endothelial cells (HCAEC) leads to increased phospholipase A(2) (PLA(2)) activity and generation of membrane phospholipid derived inflammatory metabolites, including eicosanoids and platelet activating factor. Thus, our hypothesis is that selective PLA(2) inhibitors have therapeutic potential as anti-inflammatory agents. Stimulation of confluent HCAEC monolayers with thrombin or tryptase resulted in a concentration and time-dependent increase in both prostaglandin E(2) (PGE(2)) and prostacyclin (PGI(2)) production. Pretreatment with PX-18 to inhibit secretory PLA(2) or BEL to inhibit calcium-independent PLA(2) prior to thrombin or tryptase stimulation resulted in a significant inhibition of both PGI(2) and PGE(2) release. However, pretreatment with methyl arachidonyl fluorophosphonate (MAFP), a widely used inhibitor of cytosolic PLA(2) isoforms, resulted in a significant potentiation of both thrombin and tryptase stimulated PGI(2) and PGE(2) release as a consequence of increased free arachidonic acid production. We conclude that the use of selective PLA(2) inhibitors may be of therapeutic benefit in the development and progression of atherosclerosis, however, the development of such an agent requires rigorous screening.  相似文献   

5.
Hirudin is an anticoagulant polypeptide isolated from a medicinal leech that inhibits thrombin with extraordinary potency (Kd = 0.2-1.0 pM) and selectivity. Hirudin is composed of a compact N-terminal region (residues 1-47, cross-linked by three disulfide bridges) that binds to the active site of thrombin, and a flexible C-terminal tail (residues 48-64) that interacts with the exosite I of the enzyme. To minimize the sequence of hirudin able to bind thrombin and also to improve its therapeutic profile, several N-terminal fragments have been prepared as potential anticoagulants. However, the practical use of these fragments has been impaired by their relatively poor affinity for the enzyme, as given by the increased value of the dissociation constant (Kd) of the corresponding thrombin complexes (Kd = 30-400 nM). The aim of the present study is to obtain a derivative of the N-terminal domain 1-47 of hirudin displaying enhanced inhibitory potency for thrombin compared to the natural product. In this view, we have synthesized an analogue of fragment 1-47 of hirudin HM2 in which Val1 has been replaced by tert-butylglycine, Ser2 by Arg, and Tyr3 by beta-naphthylalanine, to give the BugArgNal analogue. The results of chemical and conformational characterization indicate that the synthetic peptide is able to fold efficiently with the correct disulfide topology (Cys6-Cys14, Cys16-Cys28, Cys22-Cys37), while retaining the conformational properties of the natural fragment. Thrombin inhibition data indicate that the effects of amino acid replacements are perfectly additive if compared to the singly substituted analogues (De Filippis V, Quarzago D, Vindigni A, Di Cera E, Fontana A, 1998, Biochemistry 37:13507-13515), yielding a molecule that inhibits the fast or slow form of thrombin by 2,670- and 6,818-fold more effectively than the natural fragment, and that binds exclusively at the active site of the enzyme with an affinity (Kd,fast = 15.4 pM, Kd,slow = 220 pM) comparable to that of full-length hirudin (Kd,fast = 0.2 pM, Kd,slow = 5.5 pM). Moreover, BugArgNal displays absolute selectivity for thrombin over the other physiologically important serine proteases trypsin, plasmin, factor Xa, and tissue plasminogen activator, up to the highest concentration of inhibitor tested (10 microM).  相似文献   

6.
Chen T  Li Z  Tu J  Zhu W  Ge J  Zheng X  Yang L  Pan X  Yan H  Zhu J 《FEBS letters》2011,585(4):657-663
There is increasing evidence that microRNAs (miRNAs) play important roles in cell proliferation, apoptosis and differentiation that accompany inflammatory responses. However, whether microRNAs are associated with DC immuno-inflammatory responses with oxidized low density lipoprotein (oxLDL) stimulation is not yet known. Our study aims to explore the link of miRNAs with lipid-overload and immuno-inflammatory mechanism for atherosclerosis. In DCs transfected with microRNA-29a mimics or inhibitors, we showed that microRNA-29a plays an important role in proinflammatory cytokine secretion and scavenger receptor expression upon oxLDL-treatment. Furthermore, we suggest an additional explanation for the mechanism of microRNA-29a regulation of its functional target, lipoprotein lipase. We conclude that microRNA-29a could regulate pro-inflammatory cytokine secretion and scavenger receptor expression by targeting lipoprotein lipase in oxLDL-stimulated dendritic cells.  相似文献   

7.
The primary function of the coagulation cascade is to promote haemostasis and limit blood loss in response to tissue injury. However, it is now recognized that the physiological functions of the coagulation cascade extend beyond blood coagulation and that this cascade plays a pivotal role in influencing inflammatory and tissue repair responses via the activation of their signalling responses, the proteinase-activated receptors (PARs). Consequently, uncontrolled coagulation activity and PAR signalling contributes to the pathophysiology of several conditions, including thrombosis, arthritis, cancer, kidney disease, and acute and chronic lung injury. Much of the work thus far has focused on the role of thrombin-mediated signalling in the pathophysiology of these conditions. However, recent evidence suggests that coagulation proteinases upstream of thrombin, including factor Xa (FXa), may also signal via PARs and thus induce cellular effects independent of thrombin generation. These studies have highlighted a novel and important role for FXa signalling in influencing proinflammatory and pro-fibrotic effects following tissue injury. This article will provide an overview of FXa as a central proteinase of the coagulation cascade and will review more recent evidence that FXa signalling may contribute to inflammation and tissue remodelling. The novel opportunities that this may present for therapeutic intervention will also be highlighted.  相似文献   

8.
H Jhoti  A Cleasby  S Reid  P J Thomas  M Weir  A Wonacott 《Biochemistry》1999,38(25):7969-7977
The binding modes of four active site-directed, acylating inhibitors of human alpha-thrombin have been determined using X-ray crystallography. These inhibitors (GR157368, GR166081, GR167088, and GR179849) are representatives of a series utilizing a novel 5, 5-trans-lactone template to specifically acylate Ser195 of thrombin, resulting in an acyl complex. In each case the crystal structure of the complex reveals a binding mode which is consistent with the formation of a covalent bond between the ring-opened lactone of the inhibitor and residue Ser195. Improvements in potency and selectivity of these inhibitors for thrombin are rationalized on the basis of the observed protein/inhibitor interactions identified in these complexes. Occupation of the thrombin S2 and S3 pockets is shown to be directly correlated with improved binding and a degree of selectivity. The binding mode of GR179849 to thrombin is compared with the thrombin/PPACK complex [Bode, W., Turk, D., and Karshikov, A. (1992) Protein Sci. 1, 426-471] as this represents the archetypal binding mode for a thrombin inhibitor. This series of crystal structures is the first to be reported of synthetic, nonpeptidic acylating inhibitors bound to thrombin and provides details of the molecular recognition features that resulted in nanomolar potency.  相似文献   

9.
Monocytes play an important role in inflammation, angiogenesis, and atherosclerosis. During these processes monocytes release pre-formed proinflammatory mediators from granules, and synthesize de novo cytokines and chemokines important in the amplification of the inflammatory response. One of the most prominent triggers of inflammatory responses is the cytokine TNFalpha. However, the intracellular signaling cascades triggered by TNFalpha are not fully understood. In this study we investigated the roles of SPHK on the TNFalpha-triggered responses on human primary monocytes. We show that TNFalpha rapidly triggers S1P generation and activation of SPHK. Moreover, our data shows that SPHK1 is the isoform activated by TNFalpha, and plays an essential role on the TNFalpha-triggered intracellular Ca2+ signals, degranulation, cytokine production, and activation of NFkappaB, thus suggesting a pivotal role for SPHK1 on the proinflammatory responses triggered by TNFalpha.  相似文献   

10.
The isolation of a new type of thrombin inhibitor, called triabin, from the saliva of the hematophagous bug Triatoma pallidipennis, has recently been described. In the in vitro platelet aggregation inhibition assay triabin has a similar potency as the thrombin inhibitor hirudin now in phase III clinical trials. However, in another in vitro assay using a low molecular weight substrate for thrombin, triabin does not inhibit thrombin completely even at 6 fold higher molar doses in comparison with hirudin. This means that triabin has a novel mode of action towards thrombin making triabin into an interesting candidate as a therapeutic agent. Recently it has been shown that a recombinant baculovirus can be efficiently used for the triabin production in insect cells and that the yields in adherent cultures of High Five™ cells (approx. 20 mg l-1) were about 7 fold higher than in adherent cultures of Sf9 cells (approx. 3 mg l- 1). To optimize the triabin yield from the baculovirus/insect cell expression system, experiments were performed with suspension adapted cultures of High Five™ cells to investigate the effects of the state of the host cell, of the multiplicity of infection, of the cell density at the time of infection and of supplementation of the medium with nutrients and oxygen. Triabin yields of up to 200 mg l-1, as determined by an activity assay, could finally be obtained here. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
PURPOSE OF REVIEW: The global prevalence of obesity is increasing epidemically. Obesity causes an array of health problems, reduces life expectancy, and costs over US dollar 100 billion annually. More than a quarter of the population suffers from an aggregation of co-morbidities, including obesity, atherosclerosis, insulin resistance, dyslipidemias, coagulopathies, hypertension, and a pro-inflammatory state known as the metabolic syndrome. Patients with metabolic syndrome have high risk of atherosclerosis as well as type 2 diabetes and other health problems. Like obesity, atherosclerosis has very limited therapeutic options. RECENT FINDINGS: Fatty acid binding proteins integrate metabolic and immune responses and link the inflammatory and lipid-mediated pathways that are critical in the metabolic syndrome. This review will highlight recent studies on fatty acid binding protein-deficient models and several fatty acid binding protein-mediated pathways specifically modified in macrophages, cells that are paramount to the initiation and persistence of cardiovascular lesions. SUMMARY: Adipocyte/macrophage fatty acid binding proteins, aP2 and mal1, act at the interface of metabolic and inflammatory pathways. These fatty acid binding proteins are involved in the formation of atherosclerosis predominantly through the direct modification of macrophage cholesterol trafficking and inflammatory responses. In addition to atherosclerosis, these fatty acid binding proteins also exert a dramatic impact on obesity, insulin resistance, type 2 diabetes and fatty liver disease. The creation of pharmacological agents to modify fatty acid binding protein function will provide tissue or cell-type-specific control of these lipid signaling pathways, inflammatory responses, atherosclerosis, and the other components of the metabolic syndrome, therefore offering a new class of multi-indication therapeutic agents.  相似文献   

12.
Platelets actively participate in regulating thrombin production following physical or chemical injury to blood vessels. Injury to blood vessels initiates activation of the large numbers of platelets that appear in the subendothelium where they become exposed to tissue factor and to molecules adhesive for platelets and normally found in the extracellular matrix. The complex of plasma factor VIIa with extravascular tissue factor both initiates and localizes thrombin production on platelets and on extravascular cells. Thrombin production at these sites in turn enhances platelet activation and the subsequent hemostatic plug formation to minimize bleeding. Thrombin production and platelet activation also initiate the process of wound healing requiring thrombin-dependent cell activation and platelet-dependent formation of new blood vessels (angiogenesis). Activated platelets release from their storage granules several proteins and other factors that regulate local thrombin formation and the responses of blood vessel cells to injury to assure hemostasis and effective wound healing. Failure to localize and adequately regulate thrombin production and/or platelet activation can have pathological consequences, including the development and propagation of atherosclerosis and enhancement of tumor development. The primary basis for the pathological consequences of the failure to adequately regulate thrombin production is that the multi-functional thrombin activates several types of cells to initiate their mitogenesis. Mitogenesis precedes many of the undesirable consequences of poorly regulated thrombin production and platelet activation. In addition, activated platelets release a variety of products which influence the functions of several cell types to the extent that inadequate regulation of platelet activation (by excessive thrombin production) could contribute to the pathogenesis of acute and chronic arterial thrombosis and to tumor development. Activated platelets participate in tumor development by releasing several factors that positively (and negatively) regulate blood vessel formation.  相似文献   

13.
Lipoxygenases catalyze the oxidation of unsaturated fatty acids, such as linoleic acid, which play a crucial role in inflammatory responses. Selective inhibitors may provide a new therapeutic approach for inflammatory diseases. In this study, we describe the identification of a novel soybean lipoxygenase-1 (SLO-1) inhibitor and a potato 5-lipoxygenase (5-LOX) activator from a screening of a focused compound collection around the natural product anacardic acid. The natural product anacardic acid inhibits SLO-1 with an IC(50) of 52μM, whereas the inhibitory potency of the novel mixed type inhibitor 23 is fivefold enhanced. In addition, another derivative (21) caused non-essential activation of potato 5-LOX. This suggests the presence of an allosteric binding site that regulates the lipoxygenase activity.  相似文献   

14.
Previous studies have shown that glycosaminoglycans in the extracellular matrix accelerate the inactivation of target proteases by certain protease inhibitors. It has been suggested that the ability of the matrix of certain cells to accelerate some inhibitors but not others might reflect the site of action of the inhibitors. Previous studies showed that fibroblasts accelerate the inactivation of thrombin by protease nexin-1, an inhibitor that appears to function at the surface of cells in extravascular tissues. The present experiments showed that endothelial cells also accelerate this reaction. The accelerative activity was accounted for by the extracellular matrix and was mostly due to heparan sulfate. Fibroblasts but not endothelial cells accelerated the inactivation of thrombin by heparin cofactor II, an abundant inhibitor in plasma. This is consistent with previous suggestions that heparin cofactor II inactivates thrombin when plasma is exposed to fibroblasts and smooth muscle cells. Neither fibroblasts nor endothelial cells accelerated the inactivation of C1s by plasma C1-inhibitor.  相似文献   

15.
This review, comprised of our own data and that of others, provides a summary overview of histone deacetylase (HDAC) inhibition on intestinal inflammation as well as inflammation-mediated carcinogenesis. Experimental colitis in mice represents an excellent in vivo model to define the specific cell populations and target tissues modulated by inhibitors of HDAC. Oral administration of either suberyolanilide hydroxamic acid (SAHA) or ITF2357 results in an amelioration in these models, as indicated by a significantly reduced colitis disease score and histological score. This effect was paralleled by suppression of proinflammatory cytokines at the site of inflammation as well as specific changes in the composition of cells within the lamina propria. In addition, tumor number and size was significantly reduced in two models of inflammation-driven tumorigenesis, namely interleukin (IL)-10-deficient mice and the azoxymethane-dextran sulfate sodium (DSS) model, respectively. The mechanisms affected by HDAC inhibition, contributing to this antiinflammatory and antiproliferative potency will be discussed in detail. Furthermore, with regard to the relevance in human inflammatory bowel disease, the doses of ITF2357 considered safe in humans and the corresponding serum concentrations are consistent with the efficacious dosing used in our in vivo as well as in vitro experiments. Thus, the data strongly suggest that HDAC inhibitors could serve as a therapeutic option in inflammatory bowel disease.  相似文献   

16.
Blood coagulation plays a key role among numerous mediating systems that are activated in inflammation. Receptors of the PAR family serve as sensors of serine proteinases of the blood clotting system in the target cells involved in inflammation.Activation of PAR-1 by thrombin and of PAR-2 by factor Xa leads to a rapid expression and exposure on the membrane of endothelial cells of both adhesive proteins that mediate an acute inflammatory reaction and of the tissue factor that initiates the blood coagulation cascade. Certain other receptors (EPR-1, thrombomodulin, etc.), which can modulate responses of the cells activated by proteinases through PAR receptors, are also involved in the association of coagulation and inflammation together with the receptors of the PAR family. The presence of PAR receptors on mast cells is responsible for their reactivity to thrombin and factor Xa and defines their contribution to the association of inflammation and blood clotting processes.  相似文献   

17.
Thrombin is a multifunctional protease that plays a key role in hemostasis, thrombosis, and inflammation. Most thrombin inhibitors currently used as antithrombotic agents target thrombin''s active site and inhibit all of its myriad of activities. Exosites 1 and 2 are distinct regions on the surface of thrombin that provide specificity to its proteolytic activity by mediating binding to substrates, receptors, and cofactors. Exosite 1 mediates binding and cleavage of fibrinogen, proteolytically activated receptors, and some coagulation factors, while exosite 2 mediates binding to heparin and to platelet receptor GPIb-IX-V. The crystal structures of two nucleic acid ligands bound to thrombin have been solved. Previously Padmanabhan and colleagues solved the structure of a DNA aptamer bound to exosite 1 and we reported the structure of an RNA aptamer bound to exosite 2 on thrombin. Based upon these structural studies we speculated that the two aptamers would not compete for binding to thrombin. We observe that simultaneously blocking both exosites with the aptamers leads to synergistic inhibition of thrombin-dependent platelet activation and procoagulant activity. This combination of exosite 1 and exosite 2 inhibitors may provide a particularly effective antithrombotic approach.  相似文献   

18.
a-FABP is indespensible in inflammation and may serve as a new potential drug target for inflammation related diseases. We have successfully designed and synthesized a series of aromatic substituted pyrazoles as new human a-FABP inhibitors. The compounds strongly bound to the hydrophobic binding pocket of a-FABP, while showed significantly lower binding affinities to the closely related homologue protein h-FABP. The most potent and selective compound 5g bound to a-FABP with an apparent Ki value below 1.0 nM, while did not inhibit h-FABP at 50 μM and thus represents one of the most potent and selective a-FABP inhibitors to date. The strong binding capacity of these inhibitors was further validated by their effective blockade of inflammatory responses as determined by the production of pro-inflammatory cytokines upon LPS stimulation. Compound 5g may serve as a lead compound for developing new effective therapeutic agent for prevention and treatment of atherosclerosis, type 2 diabetes and other inflammatory and metabolic related diseases.  相似文献   

19.
Synthesis and SAR of orally active thrombin inhibitors of the d-Phe-Pro-Arg type with focus on the P2-moiety are described. The unexpected increase in in vitro potency, oral bioavailability, and in vivo activity of inhibitors with dehydroproline as P2-isostere is discussed. Over a period of 24h the antithrombin activity of the most active inhibitors with IC(50)s in the nanomolar range was determined in dogs demonstrating high thrombin inhibitory activity in plasma and an appropriate duration of action after oral administration.  相似文献   

20.
PURPOSE OF REVIEW: Inflammation contributes to the formation and progression of atherosclerosis and the therapeutic potential of some anti-inflammatory drugs has been evaluated for possible antiatherosclerotic effects. This review will briefly describe the mechanisms underlying the inflammation-atherosclerosis connection, the effect of various anti-inflammatory therapies on atherosclerotic disease and a sampling of the potential targets and agents under evaluation. RECENT FINDINGS: Some agents with anti-inflammatory properties appear to have beneficial effects on atherosclerosis or subsequent risk for cardiovascular events, while others have been disappointing. The anti-inflammatory actions of statins have been linked retrospectively with their favorable effects on atherosclerosis progression and clinical outcomes. The cardiovascular safety of COX-2 inhibitors is being assessed prospectively in patients with atherosclerosis. Potential new therapeutic agents targeting other inflammatory mechanisms and oxidative stress are being evaluated in animal models and clinical trials. SUMMARY: Due to the contributory inflammatory pathways in atherosclerosis, the properties of existing and novel anti-inflammatory agents are being carefully and actively evaluated in cardiovascular disease. Advances in our understanding of both atherosclerosis and the inflammatory contributors may play an important role in future strategies to decrease the incidence of atherosclerotic cardiovascular disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号