首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiple myeloma (MM) is an incurable plasma B cell malignancy. Despite recent advancements in anti-MM therapies, development of drug resistance remains a major clinical hurdle. DJ-1, a Parkinson’s disease-associated protein, is upregulated in many cancers and its knockdown suppresses tumor growth and overcomes chemoresistance. However, the role of DJ-1 in MM remains unknown. Using gene expression databases we found increased DJ-1 expression in MM patient cells, which correlated with shorter overall survival and poor prognosis in MM patients. Targeted DJ-1 knockdown using siRNAs induced necroptosis in myeloma cells. We found that Krüppel-like factor 6 (KLF6) is expressed at lower levels in myeloma cells compared to PBMCs, and DJ-1 knockdown increased KLF6 expression in myeloma cells. Targeted knockdown of KLF6 expression in DJ-1 knockdown myeloma cells rescued these cells from undergoing cell death. Higher DJ-1 levels were observed in bortezomib-resistant myeloma cells compared to parent cells, and siRNA-mediated DJ-1 knockdown reversed bortezomib resistance. DJ-1 knockdown increased KLF6 expression in bortezomib-resistant myeloma cells, and subsequent siRNA-mediated KLF6 knockdown rescued bortezomib-resistant myeloma cells from undergoing cell death. We also demonstrated that specific siRNA-mediated DJ-1 knockdown reduced myeloma cell growth under a hypoxic microenvironment. DJ-1 knockdown reduced the expression of HIF-1α and its target genes in hypoxic-myeloma cells, and overcame hypoxia-induced bortezomib resistance. Our findings demonstrate that elevated DJ-1 levels correlate with myeloma cell survival and acquisition of bortezomib resistance. Thus, we propose that inhibiting DJ-1 may be an effective therapeutic strategy to treat newly diagnosed as well as relapsed/refractory MM patients.  相似文献   

2.
Bai J  Guo C  Sun W  Li M  Meng X  Yu Y  Jin Y  Tong D  Geng J  Huang Q  Qi J  Fu S 《Molecular biology reports》2012,39(3):2697-2703
Lung cancer is a leading cause of cancer-related death, about 40% human non-small cell lung cancer (NSCLC) patients showed lymph node involvements. However, the precise mechanism for the metastasis is still not fully understood. This study was to analyze the potential molecular mechanism for lung cancer metastasis. In the current study, proteomics analysis by two-dimensional electrophoresis (2-DE) was performed first to identify the differentially expressed protein between the higher metastasis lung adenocarcinoma cell line Anip973 and the lower metastasis lung adenocarcinoma cell line AGZY83-a. We confirmed the result by RT-PCR, immunoblotting and immunocytochemistry analyses in these two cell lines. Then we examined the expression of the differentially expressed protein in tumor tissues of NSCLC patients by immunoblotting and immunohistochemistry analyses. Using 2-DE analysis, we have identified DJ-1 was expressed higher in the higher metastasis Anip973 compared to the parental cell line AGZY83-a, that was confirmed by RT-PCR, immunoblotting and immunocytochemistry analyses. In NSCLC patients?? tumor tissues study, immunoblotting data showed that, DJ-1 expression level was significantly higher in 72.2% (13/18) of NSCLC tissue samples compared to that in paired normal lung tissues (P?=?0.044). Immunohistochemistry analysis demonstrated increased DJ-1 expression in 85 NSCLC tumor tissue samples compared with 7 normal lung tissue samples (P?=?0.044). DJ-1 expression was also found to be significantly correlated with cancer lymphatic metastasis (P?=?0.039). DJ-1 might contribute to the metastasis of NSCLC.  相似文献   

3.
摘要 目的:探索褪黑素联合MPA(醋酸甲羟孕酮)对子宫内膜异常增生细胞增殖活性的抑制作用及其机制。方法:取分化良好的子宫内膜增生细胞株Ishikawa和内膜癌细胞株ECC1于适宜条件培养,加入褪黑素、MPA单独或者联合处理48 h后,检测子宫内膜细胞株的增殖活性。收集褪黑素、MPA单独或者联合处理48 h后的子宫内膜增生细胞株Ishikawa细胞,提取细胞内的蛋白,检测人20α-羟基类固醇脱氢酶(AKR1C1)的表达情况。结果:褪黑素和MPA联合使用后对子宫内膜异常增生细胞的抑制作用明显高于褪黑素或MPA单独使用。褪黑素和MPA可抑制AKR1C1的表达,二者联合使用对AKR1C1的抑制高于两者单独使用。结论:褪黑素可提高子宫内膜异常增生细胞对MPA的敏感性,降低MPA的使用剂量,同时抑制AKR1C1的表达,使孕酮的代谢速率降低。褪黑素与MPA联合使用给子宫内膜增生和内膜癌的治疗策略带来新的思路。  相似文献   

4.
5.
Protein deglycase DJ-1 (DJ-1) is a multifunctional protein involved in various biological processes. However, it is unclear whether DJ-1 influences atherosclerosis development and plaque stability. Accordingly, we evaluated the influence of DJ-1 deletion on the progression of atherosclerosis and elucidate the underlying mechanisms. We examine the expression of DJ-1 in atherosclerotic plaques of human and mouse models which showed that DJ-1 expression was significantly decreased in human plaques compared with that in healthy vessels. Consistent with this, the DJ-1 levels were persistently reduced in atherosclerotic lesions of ApoE−/− mice with the increasing time fed by western diet. Furthermore, exposure of vascular smooth muscle cells (VSMCs) to oxidized low-density lipoprotein down-regulated DJ-1 in vitro. The canonical markers of plaque stability and VSMC phenotypes were evaluated in vivo and in vitro. DJ-1 deficiency in Apoe−/− mice promoted the progression of atherosclerosis and exaggerated plaque instability. Moreover, isolated VSMCs from Apoe−/−DJ-1−/− mice showed lower expression of contractile markers (α-smooth muscle actin and calponin) and higher expression of synthetic indicators (osteopontin, vimentin and tropoelastin) and Kruppel-like factor 4 (KLF4) by comparison with Apoe−/−DJ-1+/+ mice. Furthermore, genetic inhibition of KLF4 counteracted the adverse effects of DJ-1 deletion. Therefore, our results showed that DJ-1 deletion caused phenotype switching of VSMCs and exacerbated atherosclerotic plaque instability in a KLF4-dependent manner.  相似文献   

6.
This study investigates the potential of agomelatine (AGO), a synthetic melatoninergic drug, in combination with paclitaxel (PTX) for the treatment of breast cancer. The effects of AGO, PTX and melatonin (MTN) on breast cancer cell viability were investigated, focusing on the role of MT1 receptors. Cell viability and gene expression were analyzed in MCF-7 and MDA-MB-231 breast cancer cell experiments. The results show that AGO has cytotoxic effects on breast cancer cells similar to MTN. Combining AGO and MTN with PTX showed synergistic effects in MCF-7 cells. The study also reveals differences in the molecular mechanisms of breast cancer between estrogen-positive MCF-7 cells and estrogen-negative MDA-MB-231 cells. Combination with AGO and PTX affects apoptosis-associated proteins in both cell types. The findings suggest that AGO, combined with PTX, may be a promising adjuvant therapy for breast cancer and highlight the importance of MTN receptors in its mechanism of action.  相似文献   

7.
8.
Krüppel-like factor 17 (KLF17), a new member of the Krüppel-like factors (KLFs), has been reported to be a negative regulator of epithelial-mesenchymal transition (EMT) and metastasis in breast cancer. However, the biological role and clinical significance of KLF17 in lung adenocarcinoma has been less clear. In the present study, we showed that KLF17 expression was decreased in lung adenocarcinoma. Reduced expression of KLF17 was correlated significantly with a short survival time in patients with lung adenocarcinoma (P<0.0001). Moreover, KLF17 expression was an independent prognostic indicator for patients with lung adenocarcinoma. KLF17 expression level was correlated with the tumor stage (P=0.016) and tumor size (P=0.001) in lung adenocarcinoma. Overexpression of KLF17 inhibited cell growth in A549 and PC-9 cell lines. In conclusion, it is possible that KLF17 inhibits tumor growth in lung adenocarcinoma. The reduced expression of KLF17 is a valuable prognostic indicator for patients with lung adenocarcinoma, and KLF17 could be a novel target for treatment of lung adenocarcinoma.  相似文献   

9.
Melatonin exhibits antitumour activities in the treatment of many human cancers. In the present study, we aimed to improve the therapeutic potential of melatonin in gastric cancer. Our results confirmed that melatonin dose-dependently suppressed the proliferation and necrosis, and increased G0/G1 phase arrest, apoptosis, autophagy and endoplasmic reticulum (ER) stress. The Ras-Raf-MAPK signalling pathway was activated in cells after melatonin treatment. RNA-seq was performed and GSEA analysis further confirmed that many down-regulated genes in melatonin-treated cells were associated with proliferation. However, GSEA analysis also indicated that many pathways related to metastasis were increased after melatonin treatment. Subsequently, combinatorial treatment was conducted to further investigate the therapeutic outcomes of melatonin. A combination of melatonin and thapsigargin increased the apoptotic rate and G0/G1 cell cycle arrest when compared to treatment with melatonin alone. Melatonin in combination with thapsigargin triggered the increased expression of Bip, LC3-II, phospho-Erk1/2 and phospho-p38 MAPK. In addition, STF-083010, an IRE1a inhibitor, further exacerbated the decrease in survival rate induced by combinatorial treatment with melatonin and thapsigargin. Collectively, melatonin was effective in gastric cancer treatment by modifying ER stress.  相似文献   

10.
11.
12.
Melatonin kills or inhibits the proliferation of different cancer cell types, and this is associated with an increase or a decrease in reactive oxygen species, respectively. Intracellular oxidants originate mainly from oxidative metabolism, and cancer cells frequently show alterations in this metabolic pathway, such as the Warburg effect (aerobic glycolysis). Thus, we hypothesized that melatonin could also regulate differentially oxidative metabolism in cells where it is cytotoxic (Ewing sarcoma cells) and in cells where it inhibits proliferation (chondrosarcoma cells). Ewing sarcoma cells but not chondrosarcoma cells showed a metabolic profile consistent with aerobic glycolysis, i.e. increased glucose uptake, LDH activity, lactate production and HIF-1α activation. Melatonin reversed Ewing sarcoma metabolic profile and this effect was associated with its cytotoxicity. The differential regulation of metabolism by melatonin could explain why the hormone is harmless for a wide spectrum of normal and only a few tumoral cells, while it kills specific tumor cell types.  相似文献   

13.
As neovascularization is essential for tumor growth and metastasis, controlling angiogenesis is a promising tactic in limiting cancer progression. Melatonin has been studied for their inhibitory properties on angiogenesis in cancer. We performed an in vivo study to evaluate the effects of melatonin treatment on angiogenesis in breast cancer. Cell viability was measured by MTT assay after melatonin treatment in triple-negative breast cancer cells (MDA-MB-231). After, cells were implanted in athymic nude mice and treated with melatonin or vehicle daily, administered intraperitoneally 1 hour before turning the room light off. Volume of the tumors was measured weekly with a digital caliper and at the end of treatments animals underwent single photon emission computed tomography (SPECT) with Technetium-99m tagged vascular endothelial growth factor (VEGF) C to detect in vivo angiogenesis. In addition, expression of pro-angiogenic/growth factors in the tumor extracts was evaluated by membrane antibody array and collected tumor tissues were analyzed with histochemical staining. Melatonin in vitro treatment (1 mM) decreased cell viability (p<0.05). The breast cancer xenografts nude mice treated with melatonin showed reduced tumor size and cell proliferation (Ki-67) compared to control animals after 21 days of treatment (p<0.05). Expression of VEGF receptor 2 decreased significantly in the treated animals compared to that of control when determined by immunohistochemistry (p<0.05) but the changes were not significant on SPECT (p>0.05) images. In addition, there was a decrease of micro-vessel density (Von Willebrand Factor) in melatonin treated mice (p<0.05). However, semiquantitative densitometry analysis of membrane array indicated increased expression of epidermal growth factor receptor and insulin-like growth factor 1 in treated tumors compared to vehicle treated tumors (p<0.05). In conclusion, melatonin treatment showed effectiveness in reducing tumor growth and cell proliferation, as well as in the inhibition of angiogenesis.  相似文献   

14.
In order to determine the biological roles of the inhibitor of DNA-binding-1/inhibitor of differentiation-1 (ID-1) protein in MGC803 and AGS cell lines, we ectopically expressed or downregulated ID-1 in the both gastric cell lines and measured various parameters of tumor cell development, including cell proliferation, cell cycle progression, apoptosis and cell migration. The ectopic expression of ID-1 significantly enhanced cell proliferation, cell cycle progression and cell migration, and protected MGC803 and AGS cell lines from cisplatin-induced apoptosis. The opposite effects were observed after downregulation of ID-1, which in combination with cisplatin treatment enhanced apoptosis in a synergistic fashion. Collectively, these findings demonstrate that ID-1 plays pivotal and diverse roles in the biology of certain gastric cancer cells, further suggesting that ID-1 is implicated in the pathogenesis and progression of gastric cancer.  相似文献   

15.
Recent reports showed that haematological and neurological expressed 1-like (HN1L) gene participated in tumorigenesis and tumour invasion. However, the expression and role of HN1L in breast cancer remain to be investigated. Here, bioinformatics, western blot and immunohistochemistry were used to detect the expression of HN1L in breast cancer. Wound healing, transwell assay, immunofluorescence assay and mass spectrum were used to explore the role and mechanism of HN1L on the migration and invasion of breast cancer, which was confirmed in vivo using a nude mice model. Results showed that HN1L was significantly over-expressed in breast cancer tissues, which was positively correlated with M metastasis of breast cancer patients. Silencing HN1L significantly inhibited the invasion and metastasis of breast cancer cells in vitro and lung metastasis in nude mice metastasis model of breast cancer. Mechanistically, HN1L interacted with HSPA9 and affected the expression of HMGB1, playing a key role in promoting the invasion and metastasis of breast cancer cell. These results suggested that HN1L was an appealing drug target for breast cancer.  相似文献   

16.
The gene MTDH/AEG-1 is overexpressed in more than 40% of breast cancer patients, and it is associated with poor clinical outcomes. Previous studies have indicated that MTDH/AEG-1 could promote metastatic lung-seeding and enhance chemoresistance. Therefore, MTDH/AEG-1 could be a candidate target against breast cancer lung metastasis. We demonstrated that MTDH/AEG-1-based DNA vaccine, delivered by attenuated Salmonella typhimurium, could evoke strong CD8+ cytotoxic-T-cell mediated immune responses against breast cancer. This vaccine showed anti-tumor growth and metastasis efficacy in a prophylactic setting. Importantly, in a therapeutic model, MTDH/AEG-1 vaccine was proved to increase chemosensitivity to doxorubicin and inhibit breast cancer lung metastasis. This vaccine could also prolong the life span of tumor-bearing mice without significant side effects in vivo. These results suggested that this novel DNA vaccine was effective in the inhibition of breast cancer growth and metastasis, and this vaccine in combination with chemotherapies offered new strategies for the clinical therapeutics of breast cancer metastasis.  相似文献   

17.
New human breast cell lines were developed from metastatic breast cancer tissues and normal breast tissues. Primary cultures were initiated from cellular outgrowths of explanted tissues or from mechanically isolated cells in two serum-free media. Cell cultures derived from both cancer and normal tissues were immortalized with pRSV-T plasmid to generate permanent breast cell lines that exhibited an epithelial morphology. Cell lines generated in this study were characterized with respect to morphology, growth rate, karyotype, presence of specific genes, and the expression of epithelial and breast markers. The cell lines expressed the epithelial cell markers, cytokeratins 8 and 18, and retained the capacity to produce human milk fat globulin. They also express the BRCA-1, erbB2, and EGF receptor genes and possess the H-ras, K-ras, and p53 genes. Preliminary data showed that one of the new cancer cell lines was highly sensitive to the cytotoxic action of taxol. It is envisioned that the new breast cell lines will be useful as targets for identification of therapeutic agents against breast cancer and as models for carcinogenesis studies. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Breast cancer is one of the most invasive cancers with high mortality. The immune stimulating Propionibacterium acnes is a Gram positive bacterium that has the ability to cause inflammation and activate Th1-type cytokine immune response. Antitumor response was associated with the inflammation induced by P. acnes, but the antitumor effect of this bacterium was not evaluated in combination with other agents. The aim of this study was to test the antitumor potential of a combination of melatonin and P. acnes against breast cancer implanted in mice. Balb/C mice were transplanted with EMT6/P cell line and in vivo antitumor effect was assessed for P. acnes, melatonin, and a combination of melatonin and P. acnes. Tumor and organs sections were examined using hematoxylin/eosin staining protocol, and TUNEL colorimetric assay was used to detect apoptosis. The expression of vascular endothelial growth factor (VEGF) was measured in tumor sections and serum levels of INF-γ, and IL-4 were measured to evaluate the immune system function. To evaluate the toxicity of our combination, AST and ALT levels were measured in the serum of treated mice. The combination of melatonin and P. acnes has high efficiency in targeting breast cancer in mice. Forty percent of treated mice were completely cured using this combination and the combination inhibited metastasis of cancer cells to other organs. The combination therapy reduced angiogenesis, exhibited no toxicity, induced apoptosis, and stimulates strong Th1-type cytokine antitumor immune response. The combination of melatonin and P. acnes represents a promising option to treat breast cancer. However, carful preclinical and clinical evaluation is needed before considering this combination for human therapy.  相似文献   

19.
20.
Melatonin is a multifunctional hormone that has long been known for its antitumoral effects. An advantage of the application of melatonin in cancer therapy is its ability to differentially influence tumors from normal cells. In this review, the roles of melatonin adjuvant therapy in human cancer are discussed. Combination of melatonin with chemotherapy could provide synergistic antitumoral outcomes and resolve drug resistance in affected patients. This combination reduces the dosage for chemotherapeutic agents with the subsequent attenuation of side effects related to these drugs on normal cells around tumor and on healthy organs. The combination therapy increases the rate of survival and improves the quality of life in affected patients. Cancer cell viability is reduced after application of the combinational melatonin therapy. Melatonin does all these functions by adjusting the signals involved in cancer progression, re-establishing the dark/light circadian rhythm, and disrupting the redox system for cancer cells. To achieve effective therapeutic outcomes, melatonin concentration along with the time of incubation for this indoleamine needs to be adjusted. Importantly, a special focus is required to be made on choosing an appropriate chemotherapy agent for using in combination with melatonin. Because of different sensitivities of cancer cells for melatonin combination therapy, cancer-specific targeted therapy is also needed to be considered. For this review, the PubMed database was searched for relevant articles based on the quality of journals, the novelty of articles published by the journals, and the number of citations per year focusing only on human cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号