首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The effect of hydrogen sulfide (H2S) donor sodium hydrosulfide (NaHS) on the heat resistance of wheat (Triticum aestivum L.) coleoptile cells, the formation of reactive oxygen species (ROS), and the activity of the antioxidant enzymes in them was investigated. The treatment of coleoptiles with 100 µM NaHS caused transient enhancement of the generation of the superoxide anion radical (O2 ?) and an increased hydrogen peroxide content. The activities of antioxidant enzymes—superoxide dismutase, catalase, and guaiacol peroxidase— and coleoptile resistance to damaging heat was later found to have increased. The biochemical and physiological effects of the hydrogen sulfide donor described above were inhibited by the treatment of wheat coleoptiles with the hydrogen peroxide scavenger dimethylthiourea, the NADPH oxidase inhibitor imidazole, the extracellular calcium chelator EGTA, and the phosphatidylinositol-specific phospholipase C inhibitor neomycin. A conclusion was made on the role of ROS generation, which is dependent on the activity of NADPH oxidase and calcium homeostasis, in the transduction of the H2S signal, which induces antioxidant enzymes and the development of plant cell heat resistance.  相似文献   

2.
The signal interactions between calcium (Ca2+) and reactive oxygen species (ROS) originated from plasma membrane NADPH oxidase in abscisic acid (ABA)-induced antioxidant defence were investigated in leaves of maize (Zea mays L.) seedlings. Treatment with ABA led to significant increases in the activity of plasma membrane NADPH oxidase, the production of leaf O2-, and the activities of several antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR). However, such increases were blocked by the pretreatment with Ca2+ chelator EGTA or Ca2+ channel blockers La3+ and verapamil, and NADPH oxidase inhibitors such as diphenylene iodonium (DPI), imidazole and pyridine. Treatment with Ca2+ also significantly induced the increases in NADPH oxidase activity, O2- production and the activities of antioxidant enzymes, and the increases were arrested by pretreatment with the NADPH oxidase inhibitors. Treatment with oxidative stress induced by paraquat, which generates O2-, led to the induction of antioxidant defence enzymes, and the up-regulation was suppressed by the pretreatment of Ca2+ chelator and Ca2+ channel blockers. Our data suggest that a cross-talk between Ca2+ and ROS originated from plasma membrane-bound NADPH oxidase is involved in the ABA signal transduction pathway leading to the induction of antioxidant enzyme activity, and Ca2+ functions upstream as well as downstream of ROS production in the signal transduction event in plants.  相似文献   

3.
Vasoactive intestinal peptide (VIP) attenuates experimental acute pancreatitis (AP) by inhibition of cytokine production from inflammatory cells. It has been suggested that reactive oxygen species (ROS) as well as cytokines play pivotal roles in the early pathophysiology of AP. This study aimed to clarify the effect of VIP on the oxidative condition in pancreas, especially pancreatic acinar cells (acini). Hydrogen peroxide (H2O2)-induced intracellular ROS, assessed with CM-H2DCFDA, increased time- and dose-dependently in acini isolated from rats. Cell viability due to ROS-induced cellular damage, evaluated by MTS assay, was decreased with ≥100 μmol/L H2O2. VIP significantly inhibited ROS production from acini and increased cell viability in a dose-dependent manner. Expression of antioxidants including catalase, glutathione reductase, superoxide dismutase (SOD) 1 and glutathione peroxidase was not altered by VIP except for SOD2. Furthermore, Nox1 and Nox2, major components of NADPH oxidase, were expressed in pancreatic acini, and significantly increased after H2O2 treatment. Also, NADPH oxidase activity was provoked by H2O2. VIP decreased NADPH oxidase activity, which was abolished by PKA inhibitor H89. These results suggested that VIP affected the mechanism of ROS production including NADPH oxidase through induction of a cAMP/PKA pathway. In conclusion, VIP reduces oxidative stress in acini through the inhibition of NADPH oxidase. These results combined with findings of our previous study suggest that VIP exerts its protective effect in pancreatic damage, not only through an inhibition of cytokine production, but also through a reduction of the injury caused by oxidative stress.  相似文献   

4.
ROS (reactive oxygen species) take an important signalling role in angiogenesis. Although there are several ways to produce ROS in cells, multicomponent non‐phagocytic NADPH oxidase is an important source of ROS that contribute to angiogenesis. In the present work, we examined the effects of H2O2 on angiogenesis including proliferation and migration in HUVECs (human umbilical vein endothelial cells), new vessel formation in chicken embryo CAM (chorioallantoic membrane) and endothelial cell apoptosis, which is closely related to anti‐angiogenesis. Our results showed that H2O2 dose‐dependently increased the generation of O2 ? (superoxide anion) in HUVECs, which was suppressed by DPI (diphenylene iodonium) and APO (apocynin), two inhibitors of NADPH oxidase. H2O2 at low concentrations (10 µM) stimulated cell proliferation and migration, but at higher concentrations, inhibited both. Similarly, H2O2 at 4 nmol/cm2 strongly induced new vessel formation in CAM, while it suppressed at high concentrations (higher than 4 nmol/cm2). Also, H2O2 (200~500 µM) could stimulate apoptosis in HUVECs. All the effects of H2O2 on angiogenesis could be suppressed by NADPH oxidase inhibitors, which suggests that NADPH oxidase acts downstream of H2O2 to produce O2 ? and then to regulate angiogenesis. In summary, our results suggest that H2O2 as well as O2 ? mediated by NADPH oxidase have biphasic effects on angiogenesis in vitro and in vivo.  相似文献   

5.
Advanced glycation end-products (AGEs) trigger multiple metabolic disorders in the vessel wall that may in turn lead to endothelial dysfunction. The molecular mechanisms by which AGEs generate these effects are not completely understood. Oxidative stress plays a key role in the development of deleterious effects that occur in endothelium during diabetes. Our main objectives were to further understand how AGEs contribute to reactive oxygen species (ROS) overproduction in endothelial cells and to evaluate the protective effect of an antioxidant plant extract. The human endothelial cell line EA.hy926 was treated with native or modified bovine serum albumin (respectively BSA and BSA-AGEs). To monitor free radicals formation, we used H2DCF-DA, dihydroethidium (DHE), DAF-FM-DA and MitoSOX Red dyes. To investigate potential sources of ROS, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and mitochondrial inhibitors were used. The regulation of different types of ROS by the polyphenol-rich extract from the medicinal plant Doratoxylon apetalum was also studied for a therapeutic perspective. BSA-AGEs exhibited not only less antioxidant properties than BSA, but also pro-oxidant effects. The degree of albumin glycoxidation directly influenced oxidative stress through a possible communication between NADPH oxidase and mitochondria. D. apetalum significantly decreased intracellular hydrogen peroxide and superoxide anions mainly detected by H2DCF-DA and DHE respectively. Our results suggest that BSA-AGEs promote a marked oxidative stress mediated at least by NADPH oxidase and mitochondria. D. apetalum plant extract appeared to be an effective antioxidant compound to protect endothelial cells.  相似文献   

6.
Titanium dioxide (TiO2) anatase nanoparticles (NPs) are metal oxide NPs commercialized for several uses of everyday life. However their toxicity has been poorly investigated. Cellular internalization of NPs has been shown to activate macrophages and neutrophils that contribute to superoxide anion production by the NADPH oxidase complex. Transmission electron micrososcopy images showed that the membrane fractions were close to the NPs while fluorescence indicated an interaction between NPs and cytosolic proteins. Using a cell-free system, we have investigated the influence of TiO2 NPs on the behavior of the NADPH oxidase. In the absence of the classical activator molecules of the enzyme (arachidonic acid) but in the presence of TiO2 NPs, no production of superoxide ions could be detected indicating that TiO2 NPs were unable to activate by themselves the complex. However once the NADPH oxidase was activated (i.e., by arachidonic acid), the rate of superoxide anion production went up to 140% of its value without NPs, this effect being dependent on their concentration. In the presence of TiO2 nanoparticles, the NADPH oxidase produces more superoxide ions, hence induces higher oxidative stress. This hyper-activation and the subsequent increase in ROS production by TiO2 NPs could participate to the oxidative stress development.  相似文献   

7.
8.
Matrix metalloproteinase-9 (MMP-9) is involved in physiological tissue remodelling processes as well as in tumor invasion and metastasis. The tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) increases MMP-9 secretion from normal human epidermal keratinocytes (NHEK) in vivo and in vitro. Here we show that the flavoprotein inhibitor diphenyleneiodinium (DPI) and the NADPH oxidase inhibitor apocynin block TPA-induced MMP-9 secretion of NHEK in vitro. Furthermore, N-acetyl-L-cysteine and L-cysteine lowered TPA-induced MMP-9 secretion, suggesting an involvement of reactive oxygen species(ROS). TPA exerts its effect on MMP-9 gene expression and secretion via the superoxide-producing enzyme NADPH oxidase: TPA rapidly stimulates generation of superoxide anion as well as gene expression of two cytosolic NADPH oxidase subunits (p47-phox and p67-phox) after 2 h, which is followed by induction of MMP-9 gene expression after 4 h. Taken together, the novel finding herein is the TPA-induced MMP-9 secretion from normal human epidermal keratinocytes through a NADPH oxidase dependent pathway.  相似文献   

9.
Generation of reactive oxygen species (ROS) constitutes an important first reaction under many stress conditions in plants. We demonstrate that Nicotiana tabacum L. cv. Bright Yellow 2 (TBY-2) cells in suspension cultures, generate superoxide radical and hydrogen peroxide upon treatment with cadmium and zinc. Addition of catalase and N,N-diethyldithiocarbamate (DDC) decreased the level of H2O2, whereas superoxide dismutase (SOD) induced a slight increase of the H2O2 production. The effects of catalase, DDC and SOD on the heavy metal-induced ROS production indicate that it occurs outside of the cells, and that at least part of the hydrogen peroxide is produced by dismutation of the superoxide radical (O2 ·−). The effect of pretreatment of the cell cultures with commonly used mammalian NADPH oxidase inhibitors was also tested. Strong inhibitions of cadmium and zinc-mediated ROS production were obtained with the flavoprotein inhibitors—diphenylene iodonium (DPI) and quinacrine and with an inhibitor of b-type cytochromes—imidazol. Membrane permeable-N-ethyl maleimide (NEM) and iodoacetate, and membrane non-permeable thiol reagents—para-chloromercuribenzoic acid (pCMBS) also inhibited the ROS production. These results suggested that the enzyme responsible for cadmium and zinc-induced ROS production in tobacco cells contains a flavocytochrome. They also show the importance of intra- and extracellular thiol groups in the observed stress reaction. The induction of ROS production with heavy metals showed properties comparable to the elicitor-induced oxidative burst in other plant cells.  相似文献   

10.
In this study we have investigated the effects of the small GTP-binding-protein Ras on the redox signalling of the human neuroblastoma cell line, SK-N-BE stably transfected with HaRas(Val12). The levels of reactive oxygen species (ROS) and superoxide anions were significantly higher in HaRas(Val12) expressing (SK-HaRas) cells than in control cells. The treatment of cells with 4-(2-aminoethyl) benzenesulfonylfluoride, a specific inhibitor of the membrane superoxide generating system NADPH oxidase, suppressed the rise in ROS and significantly reduced superoxide levels produced by SK-HaRas cells. Moreover, HaRas(Val12) induced the translocation of the cytosolic components of the NADPH oxidase complex p67(phox) and Rac to the plasma membrane. These effects depended on the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK1/2) pathway, as the specific MEK inhibitor, PD98059, prevented HaRas-mediated increase in ROS and superoxide anions. In contrast, the specific phosphoinositide 3-kinase (PI3K) inhibitors LY294002 and wortmannin were unable to reverse the effects of HaRas(Val12). Moreover, cholinergic stimulation of neuroblastoma cells by carbachol, which activated endogenous Ras/ERK1/2, induced a significant increase in ROS levels and elicited membrane translocation of p67(phox) and Rac. ROS generation induced by carbachol required the activation of ERK1/2 and PI3K. Hence, these data indicate that HaRas-induced ERK1/2 signalling selectively activates NADPH oxidase system in neuroblastoma cells.  相似文献   

11.
Summary Extracellular peroxidase has been shown to contribute to superoxide production in wounded wheat (Triticum aestivum L. cv. Ljuba) root cells. The superoxide-synthesizing system of root cells was considerably inhibited by KCN and NaN3 and activated by MnCl2 and H2O2. Treatment of roots with salicylic acid and a range of di- and tri-carbonic acids (malic, citric, malonic, fumaric, and succinic acids) stimulated superoxide production in both root cells and extracellular solution. The H2O2-stimulated superoxide production in the extracellular solution was much higher when roots were preincubated with salicylic or succinic acid. Exogenous acids enhanced peroxidase activity in the extracellular solution. Pretreatment of root cells with the detergents trypsin and sodium dodecyl sulfate had similar effects on the peroxidase activity. Significant inhibition of both superoxide production and peroxidase activity by diphenylene iodonium suggests that the specificity of the latter as an inhibitor of NADPH oxidase is doubtful. Results obtained indicate that extracellular peroxidase is involved in the superoxide production in wheat root cells. The mobile form of peroxidase can be readily secreted to the apoplastic solution and serve as an emergency enzyme involved in plant wound response.Abbreviations DPI diphenylene iodonium - ECS extracellular solution - ROS reactive oxygen species - SA salicylic acid  相似文献   

12.
Salicylic acid (SA), a ubiquitous phenolic phytohormone, is involved in many plant physiological processes including stomatal movement. We analysed SA‐induced stomatal closure, production of reactive oxygen species (ROS) and nitric oxide (NO), cytosolic calcium ion ([Ca2+]cyt) oscillations and inward‐rectifying potassium (K+in) channel activity in Arabidopsis. SA‐induced stomatal closure was inhibited by pre‐treatment with catalase (CAT) and superoxide dismutase (SOD), suggesting the involvement of extracellular ROS. A peroxidase inhibitor, SHAM (salicylhydroxamic acid) completely abolished SA‐induced stomatal closure whereas neither an inhibitor of NADPH oxidase (DPI) nor atrbohD atrbohF mutation impairs SA‐induced stomatal closures. 3,3′‐Diaminobenzidine (DAB) and nitroblue tetrazolium (NBT) stainings demonstrated that SA induced H2O2 and O2 production. Guard cell ROS accumulation was significantly increased by SA, but that ROS was suppressed by exogenous CAT, SOD and SHAM. NO scavenger 2‐(4‐carboxyphenyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide (cPTIO) suppressed the SA‐induced stomatal closure but did not suppress guard cell ROS accumulation whereas SHAM suppressed SA‐induced NO production. SA failed to induce [Ca2+]cyt oscillations in guard cells whereas K+in channel activity was suppressed by SA. These results indicate that SA induces stomatal closure accompanied with extracellular ROS production mediated by SHAM‐sensitive peroxidase, intracellular ROS accumulation and K+in channel inactivation.  相似文献   

13.
The expression and activity of NADPH oxidase increase when HL‐60 cells are induced into terminally differentiated cells. However, the function of NADPH oxidase in differentiation is not well elucidated. With 150–500 μM H2O2 inducing differentiation of HL‐60 cells, we measured phagocytosis of latex beads and investigated cell electrophoresis. Two inhibitors of NADPH oxidase, DPI (diphenyleneiodonium) and APO (apocynin), blocked the differentiation potential of cells induced by 200 μM H2O2. However, H2O2 stimulated the generation of intracellular superoxide (O2 ? ?), which decreased in the presence of the two inhibitors. DPI also inhibited H2O2‐induced ERK (extracellular‐signal‐regulated kinase) activation, as detected by Western blotting. Furthermore, PD98059, the inhibitor of the ERK pathway, inhibited the differentiation of HL‐60 cells induced by H2O2. This shows that H2O2 can activate NADPH oxidase, leading to O2 ? ? production, followed by ERK activation and ultimately resulting in the differentiation of HL‐60 cells. The data indicate that NADPH oxidase is an important cell signal regulating cell differentiation.  相似文献   

14.
Nox5, an EF-hand–containing reactive oxygen species (ROS)-generating NADPH oxidase, contains two conserved polybasic regions: one N-terminal (PBR-N), located between the fourth EF-hand and the first transmembrane region, and one C-terminal (PBR-C), between the first and second NADPH-binding subregions. Here, we show that phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P2], a major phosphoinositide in plasma membrane, binds to human Nox5 causing Nox5 to localize from internal membranes to the plasma membrane. Enzymatic modulation of PtdIns(4,5)P2 levels in intact cells altered cell surface localization of Nox5 in parallel with extracellular ROS generation. Mutations in PBR-N prevented PtdIns(4,5)P2-dependent localization of Nox5 to the plasma membrane and decreased extracellular ROS production. A synthetic peptide corresponding to PBR-N bound to PtdIns(4,5)P2, but not to PtdIns, whereas mutations in the PBR-N peptide abrogated the binding to PtdIns(4,5)P2. Arginine-197 in PBR-N was a key residue to regulate subcellular localization of Nox5 and its interaction with PtdIns(4,5)P2. In contrast, mutation in PBR-C did not affect localization. Thus, extracellular ROS production by Nox5 is modulated by PtdIns(4,5)P2 by localizing Nox5 to the plasma membrane.  相似文献   

15.
目的:探讨砷暴露诱导细胞氧化应激的分子机制。方法:采用人正常肝细胞进行亚砷酸钠和砷酸钠的暴露处理,并设相应对照组,采用SOD模拟物MnTMPyP和还原型谷胱甘肽(reducedglutathione,GSH)预处理,检测细胞超氧阴离子(02。)和细胞整体ROS的水平。WestemBlot方法检测细胞氧化/抗氧化重要酶微粒体谷胱甘肽硫转移酶(microsomalglutathioneS-transferase-l,Mgst.1)、半胱氨酸双加氧酶l(cysteinedioxygenasel,Cd01)和NADPH氧化酶的催化亚基NOX4的表达。针对NADPH氧化酶,采用特异性抑制剂(diphenyleneiodoniumchloride,DPI)进行预处理,观察对砷暴露引起的细胞ROS水平及细胞凋亡的影响。结果:砷暴露能够显著诱导细胞超氧阴离子的产生,提高细胞整体ROS水平,其中三价砷(亚砷酸钠,A矿)诱导氧化应激作用显著强于五价砷(砷酸钠,As5+)。亚砷酸钠能够显著提高NOX4的表达。针对NADPH氧化酶的抑制剂DPI能够显著抑制砷暴露引起的细胞ROS水平升高以及细胞凋亡的增加。结论:NADPH氧化酶是砷暴露诱导人肝细胞的作用靶点,砷能够通过NADPH氧化酶产生大量超氧阴离子,提高ROS水平,造成氧化应激,诱导人正常肝细胞凋亡。  相似文献   

16.
This study aims to investigate the photoprotective properties of a Lomentaria hakodatensis ethanol extract (LHE) against ultraviolet B (UVB) radiation-induced cellular damage in human HaCaT keratinocytes. LHE exhibited scavenging activity against intracellular reactive oxygen species (ROS), which were generated by either hydrogen peroxide (H2O2) or UVB radiation. Moreover, LHE scavenged superoxide anion generated by the xanthine/xanthine oxidase system and hydroxyl radical generated by the Fenton reaction (FeSO4 + H2O2). Furthermore, LHE exhibited UVB absorptive properties and attenuated injury to cellular components (e.g., lipids, proteins and DNA), resulting from UVB-induced oxidative stress. In addition, LHE reduced apoptosis in response to UVB, as shown by decreased DNA fragmentation and the formation of apoptotic bodies. These results suggest that LHE protects human keratinocytes against UVB-induced oxidative stress by scavenging ROS and absorbing UVB rays; thereby reducing damage to biological components.  相似文献   

17.
Alzheimer’s disease (AD) is marked by an increase in the production of extracellular beta amyloid plaques and intracellular neurofibrillary tangles associated with a decline in brain function. Increases in oxidative stress are regarded as an early sign of AD pathophysiology, although the source of reactive oxygen species (ROS) and the mechanism(s) whereby beta amyloid peptides (Aβ) impact oxidative stress have not been adequately investigated. Recent studies provide strong evidence for the involvement of NADPH oxidase and its downstream oxidative signaling pathways in the toxic effects elicited by Aβ. ROS produced by NADPH oxidase activate multiple signaling pathways leading to neuronal excitotoxicity and glial cell-mediated inflammation. This review describes recent studies demonstrating the neurotoxic effects of Aβ in conjunction with ROS produced by NADPH oxidase and the downstream pathways leading to activation of cytosolic phospholipase A2 (PLA2) and secretory PLA2. In addition, this review also describes recent studies using botanical antioxidants to protect against oxidative damage associated with AD. Investigating the metabolic and signaling pathways involving Aβ NADPH oxidase and PLA2 can help understand the mechanisms underlying the neurodegenerative effects of oxidative stress in AD. This information should provide new therapeutic approaches for prevention of this debilitating disease.  相似文献   

18.
NADPH oxidases play key roles in immunity and inflammation that go beyond the production of microbicidal reactive oxygen species (ROS). The past decade has brought a new appreciation for the diversity of roles played by ROS in signalling associated with inflammation and immunity. NADPH oxidase activity affects disease outcome during infections by human pathogenic fungi, an important group of emerging and opportunistic pathogens that includes Candida, Aspergillus and Cryptococcus species. Here we review how alternative roles of NADPH oxidase activity impact fungal infection and how ROS signalling affects fungal physiology. Particular attention is paid to roles for NADPH oxidase in immune migration, immunoregulation in pulmonary infection, neutrophil extracellular trap formation, autophagy and inflammasome activity. These recent advances highlight the power and versatility of spatiotemporally controlled redox regulation in the context of infection, and point to a need to understand the molecular consequences of NADPH oxidase activity in the cell.  相似文献   

19.
Excessive production of reactive oxygen species (ROS) is a key phenomenon in tumor necrosis factor (TNF)-α-induced cell death. However, the role of ROS in necroptosis remains mostly elusive. In this study, we show that TNF-α induces the mitochondrial accumulation of superoxide anions, not H2O2, in cancer cells undergoing necroptosis. TNF-α-induced mitochondrial superoxide anions production is strictly RIP3 expression-dependent. Unexpectedly, TNF-α stimulates NADPH oxidase (NOX), not mitochondrial energy metabolism, to activate superoxide production in the RIP3-positive cancer cells. In parallel, mitochondrial superoxide-metabolizing enzymes, such as manganese-superoxide dismutase (SOD2) and peroxiredoxin III, are not involved in the superoxide accumulation. Mitochondrial-targeted superoxide scavengers and a NOX inhibitor eliminate the accumulated superoxide without affecting TNF-α-induced necroptosis. Therefore, our study provides the first evidence that mitochondrial superoxide accumulation is a consequence of necroptosis.  相似文献   

20.
Reactive oxygen species (ROS) derived from vascular NADPH oxidase are important in normal and pathological regulation of vessel growth and function. Cell-specific differences in expression and function of the catalytic subunit of NADPH oxidase may contribute to differences in vascular cell response to NADPH oxidase activation. We examined the functional expression of gp91phox on NADPH oxidase activity in vascular smooth muscle cells (SMC) and fibroblasts (FB). As measured by dihydroethidium fluorescence in situ, superoxide (O2-*) levels were greater in adventitial cells compared with medial SMC in wild-type aorta. In contrast, there was no difference in O2-* levels between adventitial cells and medial SMC in aorta from gp91phox-deficient (gp91phox KO) mice. Adventitial-derived FB and medial SMC were isolated from the aorta of wild-type and gp91phox KO mice and grown in culture. Consistent with the observations in situ, basal and stimulated ROS levels were reduced in FB isolated from aorta of gp91phox KO compared with FB from wild-type aorta, whereas ROS levels were similar in SMC derived from gp91phox KO and wild-type aorta. There were no differences in expression of superoxide dismutase between gp91phox KO and wild-type FB to account for these observations. Because gp91phox is associated with membranes, we examined NADPH-stimulated O2-. production in membrane-enriched fractions of cell lysate. As measured by chemiluminescence, NADPH oxidase activity was markedly greater in wild-type FB compared with gp91phox KO FB but did not differ among the SMCs. Confirming functional expression of gp91phox in FB, antisense to gp91phox decreased ROS levels in wild-type FB. Finally, deficiency of gp91phox did not alter expression of the gp91phox homolog NOX4 in isolated FB. We conclude that the neutrophil subunit gp91phox contributes to NADPH oxidase function in vascular FB, but not SMC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号