首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The capacity of β cells to expand in response to insulin resistance is a critical factor in the development of type 2 diabetes. Proliferation of β cells is a major component for these adaptive responses in animal models. The extracellular signals responsible for β-cell expansion include growth factors, such as insulin, and nutrients, such as glucose and amino acids. AKT activation is one of the important components linking growth signals to the regulation of β-cell expansion. Downstream of AKT, tuberous sclerosis complex 1 and 2 (TSC1/2) and mechanistic target of rapamycin complex 1 (mTORC1) signaling have emerged as prime candidates in this process, because they integrate signals from growth factors and nutrients. Recent studies demonstrate the importance of mTORC1 signaling in β cells. This review will discuss recent advances in the understanding of how this pathway regulates β-cell mass and present data on the role of TSC1 in modulation of β-cell mass. Herein, we also demonstrate that deletion of Tsc1 in pancreatic β cells results in improved glucose tolerance, hyperinsulinemia and expansion of β-cell mass that persists with aging.  相似文献   

2.
The mechanistic target of rapamycin (mTOR) signaling pathway is an evolutionary conserved pathway that senses signals from nutrients and growth factors to regulate cell growth, metabolism and survival. mTOR acts in two biochemically and functionally distinct complexes, mTOR complex 1 (mTORC1) and 2 (mTORC2), which differ in terms of regulatory mechanisms, substrate specificity and functional outputs. While mTORC1 signaling has been extensively studied in islet/β-cell biology, recent findings demonstrate a distinct role for mTORC2 in the regulation of pancreatic β-cell function and mass. mTORC2, a key component of the growth factor receptor signaling, is declined in β cells under diabetogenic conditions and in pancreatic islets from patients with type 2 diabetes. β cell-selective mTORC2 inactivation leads to glucose intolerance and acceleration of diabetes as a result of reduced β-cell mass, proliferation and impaired glucose-stimulated insulin secretion. Thereby, many mTORC2 targets, such as AKT, PKC, FOXO1, MST1 and cell cycle regulators, play an important role in β-cell survival and function. This indicates mTORC2 as important pathway for the maintenance of β-cell homeostasis, particularly to sustain proper β-cell compensatory response in the presence of nutrient overload and metabolic demand. This review summarizes recent emerging advances on the contribution of mTORC2 and its associated signaling on the regulation of glucose metabolism and functional β-cell mass under physiological and pathophysiological conditions in type 2 diabetes.  相似文献   

3.
Pancreatic β cells are a type of cells that are present in the islets of Langerhans. These cells are highly specialized for the secretion of insulin in response to low increasing of blood glucose levels. Hence, pancreatic β cells could contribute to maintaining systemic glucose homeostasis. Increasing evidence has revealed that a variety of internal (ie, genetic and epigenetic factors) and external factors (ie, radical-oxidative stress) are involved in the protection and/or regeneration of pancreatic β cells. The pathways regulating β-cell replication have been intensely investigated. Glucose has an important role in cell cycle entry of quiescent β cells, which exerts its effect via glucose metabolism and unfolded proteins. A variety of growth factors, hormones, and signaling pathways (ie, calcium-calcineurin nuclear factor of activated T cells) are others factors that could affect β-cell replication under different conditions. Therefore, a greater understanding of the underlying pathways involved in the regeneration and protection of pancreatic β cells could lead to finding and developing new therapeutic approaches. Utilization of stem cells and various phytochemical agents have provided new aspects for preventing β-cell degeneration and stimulating the endogenous regeneration of islets. Thus, these therapeutic platforms could be used as potential therapies in the treatment of insulin-dependent diabetes mellitus. Here, we summarized the various mechanisms involved in pancreatic β-cell regeneration. Moreover, we highlighted different therapeutic approaches which could be used for the regeneration of pancreatic β cells.  相似文献   

4.
The molecular mechanism of β-cell regeneration remains poorly understood. Cyclin D2/CDK4 expresses in normal β cells and maintains adult β-cell growth. We hypothesized that gene therapy with cyclin D2/CDK4/GLP-1 plasmids targeted to the pancreas of STZ-treated rats by ultrasound-targeted microbubble destruction (UTMD) would force cell cycle re-entry of residual G0-phase islet cells into G1/S phase to regenerate β cells. A single UTMD treatment induced β-cell regeneration with reversal of diabetes for 6 mo without evidence of toxicity. We observed that this β-cell regeneration was not mediated by self-replication of pre-existing β cells. Instead, cyclin D2/CDK4/GLP-1 initiated robust proliferation of adult pancreatic progenitor cells that exist within islets and terminally differentiate to mature islets with β cells and α cells.  相似文献   

5.
Glucose homeostasis, which is controlled by the endocrine cells of the pancreas, is disrupted in both type I and type II diabetes. Deficiency in the number of insulin-producing β cells – a primary cause of type I diabetes and a secondary contributor of type II diabetes – leads to hyperglycemia and hence an increase in the need for insulin. Although diabetes can be controlled with insulin injections, a curative approach is needed. A potential approach to curing diabetes involves regenerating the β-cell mass, e.g. by increasing β-cell proliferation, survival, neogenesis or transdifferentiation. The nucleoside adenosine and its cognate nucleotide ATP have long been known to affect insulin secretion, but have more recently been shown to increase β-cell proliferation during homeostatic control and regeneration of the β-cell mass. Adenosine is also known to have anti-inflammatory properties, and agonism of adenosine receptors can promote the survival of β-cells in an inflammatory microenvironment. In this review, both intracellular and extracellular mechanisms of adenosine and ATP are discussed in terms of their established and putative effects on β-cell regeneration.  相似文献   

6.
Diabetes is a metabolic disorder affecting more than 400 million individuals and their families worldwide. The major forms of diabetes (types 1 and 2) are characterized by pancreatic β-cell dysfunction and, in some cases, loss of β-cell mass causing hyperglycemia due to absolute or relative insulin deficiency. The BCL-2 homology 3 (BH3)-only protein BIM has a wide role in apoptosis induction in cells. In this review, we describe the apoptotic mechanisms mediated by BIM activation in β cells in obesity and both forms of diabetes. We focus on molecular pathways triggered by inflammation, saturated fats, and high levels of glucose. Besides its role in cell death, BIM has been implicated in the regulation of mitochondrial oxidative phosphorylation and cellular metabolism in hepatocytes. BIM is both a key mediator of pancreatic β-cell death and hepatic insulin resistance and is thus a potential therapeutic target for novel anti-diabetogenic drugs. We consider the implications and challenges of targeting BIM in the treatment of the disease.  相似文献   

7.
Defective insulin secretion is a feature of type 2 diabetes that results from inadequate compensatory increase in β-cell mass, decreased β-cell survival and impaired glucose-dependent insulin release. Pancreatic β-cell proliferation, survival and secretion are thought to be regulated by signalling pathways linked to G-protein coupled receptors (GPCRs), such as the glucagon-like peptide-1 (GLP-1) and the pituitary adenylate cyclase-activating polypeptide (PACAP) receptors. β-arrestin-1 serves as a multifunctional adaptor protein that mediates receptor desensitization, receptor internalization, and links GPCRs to downstream pathways such as tyrosine kinase Src, ERK1/2 or Akt/PKB. Importantly, recent studies found that β-arrestin-1 mediates GLP-1 signalling to insulin secretion, GLP-1 antiapoptotic effect by phosphorylating the proapoptotic protein Bad through ERK1/2 activation, and PACAP potentiation of glucose-induced long-lasting ERK1/2 activation controlling IRS-2 expression. Together, these novel findings reveal an important functional role for β-arrestin-1 in the regulation of insulin secretion and β-cell survival by GPCRs.  相似文献   

8.
Adult human β-cells replicate slowly. Also, despite the abundance of rodent β-cell lines, there are no human β-cell lines for diabetes research or therapy. Prior studies in four commonly studied rodent β-cell lines revealed that all four lines displayed an unusual, but strongly reproducible, cell cycle signature: an increase in seven G(1)/S molecules, i.e. cyclins A, D3, and E, and cdk1, -2, -4, and -6. Here, we explore the upstream mechanism(s) that drive these cell cycle changes. Using biochemical, pharmacological and molecular approaches, we surveyed potential upstream mitogenic signaling pathways in Ins 1 and RIN cells. We used both underexpression and overexpression to assess effects on rat and human β-cell proliferation, survival and cell cycle control. Our results indicate that cMyc is: 1) uniquely up-regulated among other candidates; 2) principally responsible for the increase in the seven G(1)/S molecules; and, 3) largely responsible for proliferation in rat β-cell lines. Importantly, cMyc expression in β-cell lines, although some 5- to 7-fold higher than normal rat β-cells, is far below the levels (75- to 150-fold) previously associated with β-cell death and dedifferentiation. Notably, modest overexpression of cMyc is able to drive proliferation without cell death in normal rat and human β-cells. We conclude that cMyc is an important driver of replication in the two most commonly employed rat β-cell lines. These studies reverse the current paradigm in which cMyc overexpression is inevitably associated with β-cell death and dedifferentiation. The cMyc pathway provides potential approaches, targets, and tools for driving and sustaining human β-cell replication.  相似文献   

9.
In vivo regeneration of lost or dysfunctional islet β cells can fulfill the promise of improved therapy for diabetic patients. To achieve this, many mitogenic factors have been attempted, including gamma‐aminobutyric acid (GABA). GABA remarkably affects pancreatic islet cells’ (α cells and β cells) function through paracrine and/or autocrine binding to its membrane receptors on these cells. GABA has also been studied for promoting the transformation of α cells to β cells. Nonetheless, the gimmickry of GABA‐induced α‐cell transformation to β cells has two different perspectives. On the one hand, GABA was found to induce α‐cell transformation to β cells in vivo and insulin‐secreting β‐like cells in vitro. On the other hand, GABA treatment showed that it has no α‐ to β‐cell transformation response. Here, we will summarize the physiological effects of GABA on pancreatic islet β cells with an emphasis on its regenerative effects for transdifferentiation of islet α cells to β cells. We will also critically discuss the controversial results about GABA‐mediated transdifferentiation of α cells to β cells.  相似文献   

10.
Recent studies in acute myeloid leukemia (AML) suggest activation of pro-proliferative signaling cascades including those mediated by protein kinase C (PKC) represent a poor prognostic factor for patients. The classical PKC isoforms α and β generally support survival signaling and have emerged as important targets for anti-cancer therapy. Enzastaurin is a PKC β inhibitor and is in clinical trials for lymphomas, gliomas, and lung cancer. Presently, it is not known if enzastaurin could be effective against AML. In the current study, we found that high dose enzastaurin was found to promote apoptosis in the AML-derived cell lines and in blast cells from AML patients. The mechanism of cell death, however, likely does not involve PKC β as another PKC β inhibitor was not toxic to AML cell lines and did not promote enzastaurin-induced cell killing. While enzastaurin is fairly specific for PKC β, the agent can inhibit other PKC isoforms at higher concentrations. Enzastaurin was effective at inhibiting PKC α phosphorylation and membrane localization in the AML cell lines and suppressed phosphorylation of BCL2. Furthermore, enzastaurin suppressed activation of ERK (which can be activated by PKC α). Analysis of the serine/threonine phosphorylation profile in HL60 cells after enzastaurin treatment revealed that the drug inhibits the phosphorylation of a distinct set of proteins while promoting phosphorylation of another set of proteins. This suggests the drug may regulate multiple signaling pathways. Taken together, these findings suggest that enzastaurin could be effective in the therapy of AML.  相似文献   

11.
Lipotoxicity leads to insulin secretion deficiency, which is among the important causes for the onset of type 2 diabetes mellitus. Thus, the restoration of β-cell mass and preservation of its endocrine function are long-sought goals in diabetes research. Previous studies have suggested that the membrane protein caveolin-1 (Cav-1) is implicated in β-cell apoptosis and insulin secretion, however, the underlying mechanisms still remains unclear. Our objective is to explore whether Cav-1 depletion protects pancreatic β cells from lipotoxicity and what are the underlying mechanisms. In this study, we found that Cav-1 silencing significantly promoted β-cell proliferation, inhibited palmitate (PA)-induced pancreatic β-cell apoptosis and enhanced insulin production and secretion. These effects were associated with enhanced activities of Akt and ERK1/2, which in turn downregulated the expression of cell cycle inhibitors (FOXO1, GSK3β, P21, P27 and P53) and upregulated the expression of Cyclin D2 and Cyclin D3. Subsequent inhibition of PI3K/Akt and ERK/MAPK pathways abolished Cav-1 depletion induced β-cell mass protection. Furthermore, under PA induced endoplasmic reticulum (ER) stress, Cav-1 silencing significantly reduced eIF2α phosphorylation and the expression of ER stress-responsive markers BiP and CHOP, which are among the known sensitizers of lipotoxicity. Our findings suggest Cav-1 as potential target molecule in T2DM treatment via the preservation of lipotoxicity-induced β-cell mass reduction and the attenuation of insulin secretion dysfunction.  相似文献   

12.
Bansal P  Wang S  Liu S  Xiang YY  Lu WY  Wang Q 《PloS one》2011,6(10):e26225
Pancreatic islet β-cells produce large amounts of γ-aminobutyric acid (GABA), which is co-released with insulin. GABA inhibits glucagon secretion by hyperpolarizing α-cells via type-A GABA receptors (GABA(A)Rs). We and others recently reported that islet β-cells also express GABA(A)Rs and that activation of GABA(A)Rs increases insulin release. Here we investigate the effects of insulin on the GABA-GABA(A)R system in the pancreatic INS-1 cells using perforated-patch recording. The results showed that GABA produces a rapid inward current and depolarizes INS-1 cells. However, pre-treatment of the cell with regular insulin (1 μM) suppressed the GABA-induced current (I(GABA)) by 43%. Zinc-free insulin also suppressed I(GABA) to the same extent of inhibition by regular insulin. The inhibition of I(GABA) occurs within 30 seconds after application of insulin. The insulin-induced inhibition of I(GABA) persisted in the presence of PI3-kinase inhibitor, but was abolished upon inhibition of ERK, indicating that insulin suppresses GABA(A)Rs through a mechanism that involves ERK activation. Radioimmunoassay revealed that the secretion of C-peptide was enhanced by GABA, which was blocked by pre-incubating the cells with picrotoxin (50 μM, p<0.01) and insulin (1 μM, p<0.01), respectively. Together, these data suggest that autocrine GABA, via activation of GABA(A)Rs, depolarizes the pancreatic β-cells and enhances insulin secretion. On the other hand, insulin down-regulates GABA-GABA(A)R signaling presenting a feedback mechanism for fine-tuning β-cell secretion.  相似文献   

13.
Glutamate is the major excitatory neurotransmitter of the central nervous system (CNS) and may induce cytotoxicity through persistent activation of glutamate receptors and oxidative stress. Its extracellular concentration is maintained at physiological concentrations by high affinity glutamate transporters of the solute carrier 1 family (SLC1). Glutamate is also present in islet of Langerhans where it is secreted by the α-cells and acts as a signaling molecule to modulate hormone secretion. Whether glutamate plays a role in islet cell viability is presently unknown. We demonstrate that chronic exposure to glutamate exerts a cytotoxic effect in clonal β-cell lines and human islet β-cells but not in α-cells. In human islets, glutamate-induced β-cell cytotoxicity was associated with increased oxidative stress and led to apoptosis and autophagy. We also provide evidence that the key regulator of extracellular islet glutamate concentration is the glial glutamate transporter 1 (GLT1). GLT1 localizes to the plasma membrane of β-cells, modulates hormone secretion, and prevents glutamate-induced cytotoxicity as shown by the fact that its down-regulation induced β-cell death, whereas GLT1 up-regulation promoted β-cell survival. In conclusion, the present study identifies GLT1 as a new player in glutamate homeostasis and signaling in the islet of Langerhans and demonstrates that β-cells critically depend on its activity to control extracellular glutamate levels and cellular integrity.  相似文献   

14.
The pancreatic β-cell has a pivotal role in the regulation of glucose homeostasis; its death leads to type I diabetes. Neogenesis of β-cells, the differentiation of β-cells from non-β-cells, could be an important mechanism of islet cell repopulation. To examine the ability of the adult pancreas to generate new β-cells, we characterized the phenotype of β precursor cells in embryos and then determined that cells expressing embryonic traits appeared in islets of adult mouse pancreas following deletion of preexisting insulin cells by streptozotocin, a specific β-cell toxin. These precursor cells generated new β-cells (NBCs) that repopulated the islets. The number of NBCs increased dramatically after restoration of normoglycemia by insulin therapy. Future studies will seek to identify the source of the NBCs and to examine the mechanisms that lead to their differentiation.  相似文献   

15.
Defects in the development, maintenance or expansion of β-cell mass can result in impaired glucose metabolism and diabetes. N6-methyladenosine affects mRNA stability and translation efficiency, and impacts cell differentiation and stress response. To determine if there is a role for m6A in β-cells, we investigated the effect of Mettl14, a key component of the m6A methyltransferase complex, on β-cell survival and function using rat insulin-2 promoter-Cre-mediated deletion of Mettl14 mouse line (βKO). We found that βKO mice with normal chow exhibited glucose intolerance, lower levels of glucose-stimulated insulin secretion, increased β-cell death and decreased β-cell mass. In addition, HFD-fed βKO mice developed glucose intolerance, decreased β-cell mass and proliferation, exhibited lower body weight, increased adipose tissue mass, and enhanced insulin sensitivity due to enhanced AKT signaling and decreased gluconeogenesis in the liver. HFD-fed βKO mice also showed a decrease in de novo lipogenesis, and an increase in lipolysis in the liver. RNA sequencing in islets revealed that Mettl14 deficiency in β-cells altered mRNA expression levels of some genes related to cell death and inflammation. Together, we showed that Mettl14 in β-cells plays a key role in β-cell survival, insulin secretion and glucose homeostasis.  相似文献   

16.
Q Wei  YQ Sun  J Zhang 《Peptides》2012,37(1):18-24
Lipotoxicity plays an important role in the underlying mechanism of type 2 diabetes mellitus. Prolonged exposure of pancreatic β-cells to elevated concentrations of fatty acid is associated with β-cell apoptosis. Recently, glucagon-like peptide-1 (GLP-1) receptor agonists have been reported to have direct beneficial effects on β-cells, such as anti-apoptotic effects, increased β-cell mass, and improvement of β-cell function. The mechanism of GLP-1 receptor agonists' protection of pancreatic β-cells against lipotoxicity is not completely understood. We investigated whether the GLP-1 receptor agonist exendin-4 promoted cell survival and attenuated palmitate-induced apoptosis in murine pancreatic β-cells (MIN6). Exposure of MIN6 cells to palmitate (0.4mM) for 24h caused a significant increase in cell apoptosis, which was inhibited by exendin-4. Exposure of MIN6 cells to exendin-4 caused rapid activation of protein kinase B (PKB) under lipotoxic conditions. Furthermore, LY294002, a PI3K inhibitor, abolished the anti-lipotoxic effect of exendin-4 on MIN6 cells. Exendin-4 also inhibited the mitochondrial pathway of apoptosis and down-regulated Bax in MIN6 cells. Exendin-4 enhanced glucose-stimulated insulin secretion in the presence of palmitate. Our findings suggest that exendin-4 may prevent lipotoxicity-induced apoptosis in MIN6 cells through activation of PKB and inhibition of the mitochondrial pathway.  相似文献   

17.
ATP-sensitive potassium channels (KATP) regulate electrical activity and insulin secretion in pancreatic β-cells. When glucose concentration increases, the [ATP]/[ADP] ratio rises closing KATP channels, and the membrane potential depolarizes, triggering insulin secretion. This pivotal role of KATP channels is used not only by glucose but also by neurotransmitters, hormones and other physiological agents to modulate electrical and secretory β-cell response.In recent years, it has been demonstrated that estrogens and estrogen receptors are involved in glucose homeostasis, and that they can modulate the electrical activity and insulin secretion of pancreatic β-cells. The hormone 17β-estradiol (E2), at physiological levels, is implicated in maintaining normal insulin sensitivity for β-cell function. Long term exposure to E2 increases insulin content, insulin gene expression and insulin release via the estrogen receptor α (ERα), while rapid responses to E2 can regulate KATP channels increasing cGMP levels through the estrogen receptor β (ERβ) and type A guanylate cyclase receptor (GC-A). This review summarizes the main actions of 17β-estradiol on KATP channels and the subsequent insulin release in pancreatic β-cells.  相似文献   

18.
Lipotoxicity is associated with a high level of fatty acid accumulation in pancreatic β-cells. An overload of free fatty acids contributes to pancreatic β-cell apoptosis and dysfunction. Insulin secretion involves sequential ionic events upon glucose stimulation. ATP sensitive potassium (KATP) channels serve as glucose sensors and effectively initiate glucose-stimulated insulin secretion. This study investigated the effects of lipotoxicity on the trafficking of KATP channels in pancreatic β cells using chronic palmitic acid –injected mice and treated insulinoma cells. The chronic palmitic acid -injected mice displayed type II diabetic characteristics. The pancreatic sections of these mice exhibited a decrease in the expression of KATP channels. We then tested the time and dose effects of palmitic acid on the cell viability of INS-1 cells. We observed a significant decrease in the surface expression of KATP channels after 72 h of treatment with 0.4 mM palmitic acid. In addition, this treatment induced pancreatic β-cell apoptosis by increasing cleaved caspase 3 protein level. Our results demonstrated cotreatment with glibenclamide, the sulfonylurea compounds for type II diabetes mellitus, in palmitic acid -treated cells reduces cell death and recovers the glucose stimulated insulin secretion through increasing the surface expression of KATP channels. Importantly, glibenclamide also improved glucose tolerance, triglyceride concentration, and insulin sensitivity in the palmitic acid-injected mice. In conclusion, an increase in the surface expression of KATP channels restores insulin secretion, reduces pancreatic β-cell’s apoptosis, highlighting correct trafficking of KATP channels is important in survival of β-cells during lipotoxicity.  相似文献   

19.
The pathogenesis of post-transplant diabetes mellitus (PTDM) is thought to be partly related to the direct toxic effect of cyclosporine (CsA) on pancreatic β-cells and the resultant decrease in insulin synthesis and secretion. Although rosiglitazone (Rosi) is an insulin sensitizer, recent data has shown that Rosi also directly protects against β-cell dysfunction and death. This study was undertaken to clarify the effects of Rosi on CsA-induced β-cell dysfunction and death. The deterioration in glucose tolerance caused by CsA administration was significantly improved by cotreatment with Rosi. The relative volume and absolute mass of β-cells were significantly reduced by CsA, whereas combined treatment with Rosi had protective effects. Induction of β-cell death and increased expression of endoplasmic reticulum (ER) stress markers (CHOP and spliced XBP-1) by CsA were rescued by Rosi. Thus, Rosi signaling directly modulates the ER stress response, promoting β-cell adaptation and survival. Rosi might be an appropriate drug for preventing and treating CsA-induced PTDM.  相似文献   

20.
SAD-A kinase is a member of the AMPK-related family of kinases, which are under the control of LKB1 kinase. In the human kinome, SAD-A is most closely related to AMPK, a key energy sensor and master regulator of metabolism. In contrast to AMPK, little is known about the physiological function of the SAD-A kinase in metabolism. Recent studies using knockout mice have revealed a striking role of the SAD-A kinase in regulating dynamic functions of islet β cells, from glucose-stimulated insulin secretion (GSIS), islet β-cell size and mass, to GLP-1 response as the first tissue-specific effector of mTORC1 signaling. These studies suggest that SAD-A and AMPK kinase may function as the positive and negative regulators of mTORC1 signaling in islet β cells. Importantly, these findings have implicated SAD-A kinase as a novel drug target for the treatment of type 2 diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号