共查询到20条相似文献,搜索用时 0 毫秒
1.
Mohammad Bakhtiar Hesam Shariati Behrooz Niknafs Abbas Majdi Seghinsara Naser Shokrzadeh Mohammad Reza Alivand 《Journal of cellular physiology》2019,234(11):19629-19639
Successful implantation of embryos requires endometrial receptivity. Glucocorticoids are one of the factors influencing the implantation window. In this study, 40 female BALB/c mice were used to study the impacts of dexamethasone administration on endometrial receptivity markers during implantation window. The mice mated and were randomly divided into four groups: control (vehicle), dexamethasone (100 μg/kg, IP), PP242 (30 mg/kg, IP), and dexamethasone + PP242 (Dex + PP242). On the Day 4th and 5th of gestation, mice received their respective treatments and were killed on the 5th day. To assess the expression of Muc1, leukemia inflammatory inhibitor (LIF), serum/glucocorticoid-inducible kinase 1 (SGK1), epithelial Na+ channel (ENaC), miRNA 200a, and miRNA 223-3p in the endometrium real-time polymerase chain reaction was performed. Furthermore, using Western blot analysis protein expressions of extracellular signal-regulated kinase 1/2 (ERK1/2), mammalian target of rapamycin (mTOR), and euk皓aryotic translation initiation factor 4E-binding protein 1 (4E-BP1) were evaluated. Periodic Acid-Schiff staining was used to examine the histomorphological changes of the uterus. According to the results dexamethasone declined the expression of LIF, whereas upregulated expression of Muc1, SGK1, ENaC mRNA, miRNA 200a, and miRNA 223-3p in the endometrium. In addition, PP242, an mTOR inhibitor, induced mRNA expression of Muc1, miRNA200a, and miRNa223-3p whereas it declined the expression of LIF. Moreover, activity of the ERK1/2-mTOR pathway in the endometrial cells was deterred by dexamethasone and PP242. Nonstop epithelium proliferation and elevated surface glycoproteins layer on epithelium of dexamethasone and/or PP242-received groups were divulged through histochemical analysis. According to the above mentioned results, uterine receptivity during implantation period was declined by dexamethasone, at least in part, through modulation of involved genes in endometrial receptivity and inhibition of the ERK1/2-mTOR pathway. 相似文献
2.
Yi-Ru Wang Kun-Lin Chen Cheng-Min Li Lian Li Gen-Lin Wang 《Journal of cellular physiology》2019,234(4):3961-3972
Heat stress can inhibit follicular development in dairy cows, and thus can affect their reproductive performance. Follicular granulosa cells can synthesize estrogen, that affects the development and differentiation of follicles by apoptosis. Heme oxygenase 1 (HO-1/heat shock protein 32) plays an antiapoptotic and cytoprotective role in various cells during stress-induced apoptosis, but little is known about its definitive function in bovine (ovarian) granulosa cells (bGCs). In our study, the roles and mechanism of HO-1 on the heat stress-induced apoptosis of bGCs were studied. Our results show that the expression of HO-1 was significantly increased under heat stress. Moreover, HO-1 silencing increased apoptosis, whereas its overexpression dampened apoptosis by regulating the expression of Bax/Bcl-2 and the levels of cleaved caspase-3. In addition, HO-1 can also play a cytoprotective role by affecting estrogen levels and decomposing heme to produce biologically active metabolite carbon monoxide (CO). Meanwhile, CO significantly increased the level of HO-1, decreased Bax/Bcl-2 levels, and inhibited the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway. The apoptosis of ovarian GCs can affect the secretion of estrogen and lead to disorder of the ovarian microenvironment, thus affecting the normal function of the ovary. Our results indicate that HO-1 acts as a cytoprotective enzyme and plays a protective role in heat-induced apoptosis of bGCs. In conclusion, HO-1 and its metabolite CO inhibit the apoptosis of bGCs induced by heat stress through the ERK1/2 pathway. The results of this study provide a valuable clue for improving the fertility of heat stressed cows in summer. 相似文献
3.
4.
Xianxian Li Yuanyuan Ma Xiangnan Wu Zhichao Hao Jian Yin Jiefei Shen Xiaoyu Li Ping Zhang Hang Wang 《Biochemical and biophysical research communications》2013
Interleukin-6 (IL-6) is a potent stimulator of osteoclastic bone resorption. Osteocyte secretion of IL-6 plays an important role in bone metabolism. Serotonin (5-HT) has recently been reported to regulate bone metabolism. The aim of this study was to evaluate the effect of serotonin on osteocyte expression of IL-6. The requirement for the 5-HT receptor(s) and the role of the extracellular signal-regulated kinase 1/2 (ERK1/2) in serotonin-induced IL-6 synthesis were examined. In this study, real-time PCR and ELISA were used to analyse IL-6 gene and protein expression in serotonin-stimulated MLO-Y4 cells. ERK1/2 pathway activation was determined by Western blot. We found that serotonin significantly activated the ERK1/2 pathway and induced IL-6 mRNA expression and protein synthesis in cultured MLO-Y4 cells. However, these effects were abolished by pre-treatment of MLO-Y4 cells with a 5-HT2B receptor antagonist, RS127445 or the ERK1/2 inhibitor, PD98059. Our results indicate that serotonin stimulates osteocyte secretion of IL-6 and that this effect is associated with activation of 5-HT2B receptor and the ERK1/2 pathway. These findings provide support for a role of serotonin in bone metabolism by indicating serotonin regulates bone remodelling by mediating an inflammatory cytokine. 相似文献
5.
Our previous study demonstrated that ultrasound is able to promote differentiation on neural stem cells (NSCs), and dual-frequency ultrasound promotes this effect due to enhanced acoustic cavitation compared with single-frequency ultrasound. However, the underlying biological reasons have not been well disclosed. The purpose of this study was to investigate the underlying bioeffects, mechanisms and signaling pathways of dual-frequency ultrasound on NSC differentiation. The morphology, neurite outgrowth, and differentiation percentages were investigated under various dual-frequency simulation parameters with exposure periods varying from 5 to 15 min. Morphological observations identified that dual-frequency ultrasound stimulation promoted ultrasound dose-dependent neurite outgrowth. In particular, cells exposed for 10 min/2 days showed optimal neurite outgrowth and neuron differentiation percentages. In addition, live cell calcium images showed that dual-frequency ultrasound enhanced the internal calcium content of the cells, and calcium ions entering cells from the extracellular environment could be observed. Dual frequency ultrasound exposure enhanced extracellular calcium influx and upregulated extracellular signal-regulated kinases 1/2 (ERK1/2) expression. Observations from immunostaining and protein expression examinations also identified that dual-frequency ultrasound promoted brain-derived neurotrophic factor (BDNF) secretion from astrocytes derived from NSCs. In summary, evidence supports that dual-frequency ultrasound effectively enhances functional neuron differentiation via calcium channel regulation via the downstream ERK1/2 pathway and promotes BDNF secretion to serve as feedback to cascade neuron differentiation. The results may provide an alternative for cell-based therapy in brain injury. 相似文献
6.
Kim JS Kim IK Lee SY Song BW Cha MJ Song H Choi E Lim S Ham O Jang Y Hwang KC 《Cell biology international》2012,36(3):305-310
VSMC (vascular smooth muscle cell) proliferation contributes significantly to intimal thickening in atherosclerosis, restenosis and venous bypass graft diseases. Ang II (angiotensin II) has been implicated in VSMC proliferation though the activation of multiple growth-promoting signals. Although TZDs (thiazolidinediones) can inhibit VSMC proliferation and reduce Ang II-induced fibrosis, the mechanism underlying the inhibition of VSMC proliferation and fibrosis needs elucidation. We have used primary cultured rat aortic VSMCs and specific antibodies to investigate the inhibitory mechanism of rosiglitazone on Ang II-induced VSMC proliferation. Rosiglitazone treatment significantly inhibited Ang II-induced rat aortic VSMC proliferation in a dose-dependent manner. Western blot analysis showed that rosiglitazone significantly lowered phosphorylated ERK1/2 (extracellular-signal-regulated kinase 1/2), Akt (also known as protein kinase B), mTOR (mammalian target of rapamycin), p70S6K (70 kDa S6 kinase) and 4EBP1 (eukaryotic initiation factor 4E-binding protein) levels in Ang II-treated VSMCs. In addition, PPAR-γ (peroxisome-proliferator-activated receptor γ) mRNA increased significantly and CTGF (connective tissue growth factor), Fn (fibronectin) and Col III (collagen III) levels decreased significantly. The results demonstrate that the rosiglitazone directly inhibits the pro-atherosclerotic effect of Ang II on rat aortic VSMCs. It also attenuates Ang II-induced ECM (extracellular matrix) molecules and CTGF production in rat aortic VSMCs, reducing fibrosis. Importantly, PPAR-γ activation mediates these effects, in part, through the mTOR-p70S6K and -4EBP1 system. 相似文献
7.
Naser Shokrzadeh Mohammad Reza Alivand Ali Abedelahi Mohammad B. Hessam Shariati Behrooz Niknafs 《Journal of cellular physiology》2019,234(8):12989-13000
Calcitonin (CT) is one of the factors affecting the embryo implantation, but its effects on the implantation window have not been fully investigated. The current study investigated the effects of CT on the endometrium receptivity by morphological study and evaluation of leukemia inhibitory factor (LIF), mucin 1 (Muc-1), and microRNA (miRNA) Let-7a in the ovarian stimulation and the normal ovarian cycle. Then the mechanism of the CT effects through the mammalian target of rapamycin (mTOR) signaling pathway was studied by using PP242. A total of 64 BALB/c mice were divided into the normal ovarian cycle and ovarian stimulation groups. Each group consisted of four subgroups: control, calcitonin, PP242, and calcitonin+PP242. CT and PP242 were injected on the fourth of pregnancy into the mice and 24 hr later all the mice were killed. The uterine tissue samples were used for morphological analysis, and endometrial cells were mechanically isolated for evaluation of gene and protein expression. The results showed that ovarian stimulation induced mTOR phosphorylation as well as increased expression of the Let-7a miRNA. In addition, CT injection increased the expression of LIF and miRNA Let-7a in ovarian stimulation similar to that in normal ovarian cycles. However, injection of PP242 reduced expression of miRNA Let-7a and increased Muc-1 expression in ovarian stimulation group. In conclusion, the administration of CT improved endometrial receptivity in mice. This phenomenon occurred by upregulation of LIF, miRNA Let-7a and downregulation of Muc-1 via mTOR signaling pathway. 相似文献
8.
耐力运动对大鼠骨骼肌ERK1/2活性的影响 总被引:2,自引:0,他引:2
目的:探讨耐力运动对大鼠骨骼肌蛋白总量(t-ERK1/2)及磷酸化ERK1/2(p-ERK1/2)及ERK2mRMA表达的影响。方法:SD大鼠随机分为对照组和运动组。运动组分为1h/d和1.5h/d组,共7周,运动结束后24h和48h取材,测定葡萄糖和胰岛素浓度;Westernblot法检测骨骼肌t-ERK1/2、p-ERK1/2蛋白表达;RT-PCR法分析ERK2mRNA表达。结果:与对照组比较,运动组胰岛素浓度降低;各运动组p-ERK1/2升高;1.5h/d-24h和-48h组t-ERK1/2增高;1h/d-24h组与1.5h/d-24h和-48hERK2mRNA表达增高。结论:耐力运动可能通过增加ERK1/2活性,提高大鼠骨骼肌对胰岛素的敏感性。 相似文献
9.
Audrey Fouchs Hélène Ollivier Christophe Haond Stella Roy Patrick Calvès Karine Pichavant‐Rafini 《Biology of the cell / under the auspices of the European Cell Biology Organization》2010,102(8):447-456
Background information. Activation of MAPKs (mitogen‐activated protein kinases), in particular ERK1/2 (extracellular‐signal‐regulated kinase 1/2), has been reported to take place in a large variety of cell types after hypo‐osmotic cell swelling. Depending on cell type, ERK1/2 phosphorylation can then serve or not the RVD (regulatory volume decrease) process. The present study investigates ERK1/2 activation after aniso‐osmotic stimulations in turbot hepatocytes and the potential link between phosphorylation of these proteins and RVD. Results. In turbot hepatocytes, Western‐blot analysis shows that a hypo‐osmotic shock from 320 to 240 mOsm·kg?1 induced a rapid increase in ERK1/2 phosphorylation, whereas a hyper‐osmotic shock from 320 to 400 mOsm·kg?1 induced no significant change in the phosphorylation of these proteins. The hypo‐osmotic‐induced ERK1/2 phosphorylation was significantly prevented when hypo‐osmotic shock was performed in the presence of the specific MEK (MAPK/ERK kinase) inhibitor PD98059 (100 μM). In these conditions, the RVD process was not altered, suggesting that ERK1/2 did not participate in this process in turbot hepatocytes. Moreover, the hypo‐osmotic‐induced activation of ERK1/2 was significantly prevented by breakdown of extracellular ATP by apyrase (10 units·ml?1), by inhibition of purinergic P2 receptors by suramin (100 μM) or by calcium depletion using EGTA (1 mM) and thapsigargin (1 μM). Conclusions. In turbot hepatocytes, hypo‐osmotic swelling but not hyper‐osmotic shrinkage induced the activation of ERK1/2. However, these proteins do not seem to be involved in the RVD process. Their hypo‐osmotic‐induced activation is partially due to cascades of signalling events triggered by the binding of released ATP on purinergic P2 receptors and requires the presence of calcium. 相似文献
10.
Yuanyuan Wei Xiaolin Zhang Shujuan Wen Shaode Huang Quanfang Huang Shengjuan Lu Facheng Bai Jinlan Nie Jinbin Wei Zhongpeng Lu Xing Lin 《Journal of cellular biochemistry》2019,120(9):14936-14945
The present study was to investigate the inhibitory effect of methyl helicterate (MH) on hepatic stellate cells (HSC-T6), primarily elucidating the underlying mechanism of MH against liver fibrosis. HSC-T6 cells were activated by platelet-derived growth factor (PDGF) stimulation, and then the effects of MH on cell viability, cytomembrane integrity, colony, migration, apoptosis, and cell cycle were detected. Moreover, the regulative mechanism of MH on HSCs was investigated by detecting the activation of the extracellular signal-regulated kinase (ERK1/2) signaling pathway. The results showed that MH significantly inhibited HSC-T6 cell viability and proliferation in a concentration-dependent manner. It notably promoted the release of lactate dehydrogenase, destroying cell membrane integrity. MH also markedly inhibited HSC-T6 cell clonogenicity and migration. Moreover, MH treatment significantly induced cell apoptosis and arrested cell cycle at the G2 phase. The further study showed that MH inhibited the expression of ERK1, ERK2, c-fos, c-myc, and Ets-1, blocking the ERK1/2 pathway. In conclusion, this study demonstrates that MH significantly inhibits HSC activation and promotes cell apoptosis via downregulation of the ERK1/2 signaling pathway. 相似文献
11.
12.
Sofia S Pereira Mariana P Monteiro Madalena M Costa Jorge Ferreira Marco G Alves Pedro F Oliveira Ivana Jarak Duarte Pignatelli 《Journal of cellular biochemistry》2019,120(1):894-906
Unraveling molecular mechanisms that regulate tumor development and proliferation is of the utmost importance in the quest to decrease the high mortality rate of adrenocortical carcinomas (ACC). Our aim was to evaluate the role of two of the mitogen-activated protein kinase (MAPK) signaling pathways (extracellular signal-regulated protein kinases [ERKs 1/2] and p38) in the adrenocortical tumorigenesis, as well as the therapeutic potential of MAPK/ERK inhibition. ERKs 1/2 and p38 activation were evaluated in incidentalomas (INC; n = 10), benign Cushing's syndrome (BCS; n = 12), malignant Cushing's syndrome (MCS; n = 6) and normal adrenal glands (NAG; 8). ACC cell line (H295R) was used to evaluate the ability of PD184352 (0.1, 1, and 10 µM), a specific MEK-MAPK-ERK pathway inhibitor, to modulate cell proliferation, viability, metabolism, and steroidogenesis. ERKs 1/2 activation was significantly higher in MCS (2.83 ± 0.17) compared with NAG (1.00 ± 0.19 “arbitrary units”), INC (1.20 ± 0.13) and BCS (2.09 ± 0.09). Phospho-p38 expression was absent in all the MCS analyzed. MAPK/ERK kinase (MEK) inhibition with PD184352 significantly decreased proliferation as well as steroidogenesis and also increased the redox state of the H295R cells. This data suggests that MEK-MAPK-ERK signaling has a role in adrenocortical tumorigenesis that could be potentially used as a diagnostic marker for malignancy and targeted treatment in ACC. 相似文献
13.
Ning Zhang Weihua Cai Guoyong Yin David J. Nagel Bradford C. Berk 《Cell biology international》2010,34(1):41-47
Cell polarity is critical for cell migration and requires localized signal transduction in subcellular domains. Recent evidence demonstrates that activation of ERK1/2 (extracellular‐signal‐regulated kinase 1/2) in focal adhesions is essential for cell migration. GIT1 (G‐protein‐coupled receptor kinase‐interacting protein 1) has been shown to bind paxillin and regulate focal‐adhesion disassembly. We have previously reported that GIT1 binds to MEK1 [MAPK (mitogen‐activated protein kinase)/ERK kinase 1] and acts as a scaffold to enhance ERK1/2 activation in response to EGF (epidermal growth factor). In the present study we show that GIT1 associates with ERK1/2 in focal adhesions and this association increases after EGF stimulation. The CC (coiled‐coil) domain of ERK1/2 is required for association with GIT1, translocation to focal adhesions, and cell spreading and migration. Immunofluorescent staining showed that, after EGF stimulation, GIT1 co‐localized with pERK1/2 (phosphorylated ERK1/2) in focal adhesions. The binding of GIT1 and ERK1/2 was functionally important, since transfecting an ERK2 mutant lacking the CC domain [ERK2(del CC)] significantly decreased pERK1/2 translocation to focal adhesions, cell spreading and migration induced by EGF. In summary, the CC domain of ERK1/2 is necessary for binding to GIT1, for ERK1/2 activation in focal adhesions, and for cell spreading and migration. 相似文献
14.
Lee YJ Cho HN Soh JW Jhon GJ Cho CK Chung HY Bae S Lee SJ Lee YS 《Experimental cell research》2003,291(1):251-266
Oxidative stress is known to induce apoptosis in a wide variety of cell types, apparently by modulating intracellular signaling pathways. High concentrations of H2O2 have been found to induce apoptosis in L929 mouse fibroblast cells. To elucidate the mechanisms of H2O2-mediated apoptosis, ERK1/2, p38-MAPK, and JNK1/2 phosphorylation was examined, and ERK1/2 and JNK1/2 were found to be activated by H2O2. Inhibition of ERK1/2 activation by treatment of L929 cells with PD98059 or dominant-negative ERK2 transfection blocked H2O2-induced apoptosis, while inhibition of JNK1/2 by dominant-negative JNK1 or JNK2 or MKK4 or MKK7 transfection did not affect H2O2-mediated apoptosis. H2O2-mediated ERK1/2 activation was not only Ras-Raf dependent, but also both tyrosine kinase (PDGFbeta receptor and Src) and PKCdelta dependent. H2O2-mediated PKCdelta-dependent and tyrosine kinase-dependent ERK1/2 activations were independent from each other. Based on the above results, we suggest for the first time that oxidative damage-induced apoptosis is mediated by ERK1/2 phosphorylation which is not only Ras-Raf dependent, but also both tyrosine kinase and PKCdelta dependent. 相似文献
15.
Embryonic stem (ES) cells represent an ideal source for cell engraftment in the damaged central nervous system (CNS). Understanding key signals that control ES cell differentiation may improve cell type-specific differentiation that is suitable for transplantation therapy. We tested the hypothesis that extracellular signal-regulated kinase (ERK) 1/2 phosphorylation is an early signaling event required for the neuronal differentiation of ES cells. Cultured mouse ES cells were treated with an all-trans-retinoic-acid (RA) protocol to generate neurally induced progenitor cells. Western blot analysis showed a dramatic increase in ERK 1/2 phosphorylation (p-ERK 1/2) 1-5 days after RA induction, which was attenuated in the presence of the p-ERK 1/2-specific inhibitor UO126. Phospho-ERK 1/2 inhibition significantly reduced the number of NeuN-positive cells and the expression of associated cytoskeletal proteins. In differentiating ES cells, there was increased nuclear translocation of STAT3 and decreased protein expression levels of GDNF, BDNF and NGF. STAT3 translocation was attenuated by UO126. Finally, caspase-3 activation was observed in the presence of UO126, suggesting that the ERK pathway also contributes to the survival of differentiating ES cells. These data indicate that ERK 1/2 phosphorylation is a key event required for early neuronal differentiation and survival of ES cells. 相似文献
16.
Liping Qiu Liangjing Chen Xiaobo Yang Anfang Ye Wei Jiang Wenjun Sun 《Journal of cellular physiology》2019,234(6):7734-7741
Extremely low frequency electromagnetic field (ELF-EMF) is a kind of physical stimulus in public and occupational environment. Numerous studies have indicated that exposure of cells to ELF-EMF could promote cell proliferation. But the detailed mechanisms implicated in these proliferative processes remain unclear. In the present experiment, the possible roles of sphingosine-1-phosphate (S1P) in 50-Hz magnetic field (MF)-induced cell proliferation were investigated. Results showed that exposure of human amniotic (FL) cells to a 50-Hz MF with an intensity of 0.4 mT significantly enhanced ceramide metabolism, increased S1P production, activated extracellular signal regulated kinase 1/2 (ERK1/2), and promoted cell proliferation. All of these effects induced by MF exposure could be inhibited by SKI II, an inhibitor of sphingosine kinase (SphK). In addition, both the cell proliferative response and the ERK1/2 activation induced by MF exposure were blocked completely by U0126, a specific inhibitor of MEK (ERK kinases 1 and 2). Taken together, the findings in present study suggested that S1P mediated 50-Hz MF-induced cell proliferation via triggering ERK1/2 signal pathway. 相似文献
17.
18.
Myostatin is known as an inhibitor of muscle development, but its role in adipogenesis and lipid metabolism is still unclear, especially the underlying mechanisms. Here, we demonstrated that myostatin inhibited 3T3-L1 preadipocyte differentiation into adipocyte by suppressing C/EBPα (CCAAT/enhancer-binding protein α) and PPARγ (peroxisome-proliferator-activated receptor γ), also activated ERK1/2 (extracellular-signal-regulated kinase 1/2). Furthermore, myostatin enhanced the phosphorylation of HSL (hormone-sensitive lipase) and ACC (acetyl-CoA carboxylase) in fully differentiated adipocytes, as well as ERK1/2. Besides, we noted that myostatin markedly raised the levels of leptin and adiponectin release and mRNA expression during preadipocyte differentiation, but the levels were inhibited by myostatin treatments in fully differentiated adipocytes. These results suggested that myostatin suppressed 3T3-L1 preadipocyte differentiation and regulated lipid metabolism of mature adipocyte, in part, via activation of ERK1/2 signalling pathway. 相似文献
19.
卡铂(carboplatin, CBP)是一种抗肿瘤活性较强的化疗药物, 通过诱导细胞周期阻滞抑制肿瘤细胞生长, 但其诱导细胞周期阻滞的报告不甚一致. 本研究探索卡铂对卵巢癌HO-8910细胞生长及细胞周期进程的影响. MTS结果显示, 卡铂以浓度和时间依赖方式抑制卵巢癌HO-8910细胞生长, 联合使用ERK1/2通路抑制剂PD98059可使卡铂抗卵巢癌细胞增殖作用增强. 采用Giemsa染色法观察到, 卡铂与PD98059单用或联用均能致卵巢癌细胞发生明显的形态学变化. 流式细胞术检测细胞周期发现, 随卡铂浓度的增高, S期阻滞作用增强; 抑制ERK1/2通路可拮抗卡铂对HO-8910细胞S期阻滞作用, 增加G1期阻滞作用, 而对G2/M期细胞影响不明显. Western印迹结果显示, 随卡铂浓度的增高, p-ERK1/2、Cdc2(Y15)和p Cdc2(T161)的表达逐渐升高, Cyclin E1和Cyclin B1的表达逐渐降低; 抑制ERK1/2通路可将卡铂上调,p-ERK1/2和p-Cdc2(T161)的作用反转为下调作用, 上调Cdc2(Y15)的表达受阻, 抑制Cyclin B1的下调作用, 促进Cyclin E1的下调作用. 本研究结果提示, 卡铂通过抑制ERK1/2激活, 诱导人卵巢癌HO-8910细胞S和G1期阻滞, 抑制卵巢癌细胞生长. 相似文献