首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Vascular smooth muscle cells (VSMCs) switch to macrophage‐like cells after cholesterol loading, and this change may play an important role in the progression of atherosclerosis. C1q/TNF‐related protein 9 (CTRP9) is a recently discovered adipokine that has been shown to have beneficial effects on glucose metabolism and vascular function, particularly in regard to cardiovascular disease. The question of whether CTRP9 can protect VSMCs from cholesterol damage has not been addressed. In this study, the impact of CTRP9 on cholesterol‐damaged VSMCs was observed. Our data show that in cholesterol‐treated VSMCs, CTRP9 significantly reversed the cholesterol‐induced increases in pro‐inflammatory factor secretion, monocyte adhesion, cholesterol uptake and expression of the macrophage marker CD68. Meanwhile, CTRP9 prevented the cholesterol‐induced activation of the TLR4–MyD88–p65 pathway and upregulated the expression of proteins important for cholesterol efflux. Mechanistically, as siRNA‐induced selective gene ablation of AMPKα1 abolished these effects of CTRP9, we concluded that CTRP9 achieves these protective effects in VSMCs through the AMP‐dependent kinase (AMPK) pathway.  相似文献   

2.
Proteinuria is an important risk factor for chronic kidney diseases (CKD). Several studies have suggested that proteinuria initiates tubulointerstitial inflammation, while the mechanisms have not been fully understood. In this study, we hypothesized whether the activation of the TLR2–MyD88–NF-κB pathway is involved in tubulointerstitial inflammation induced by proteinuria. We observed expression of TLR2, MyD88, NF-κB, as well as TNF-α and IL-6 detected by immunohistostaining, Western blotting and real-time PCR in albumin-overloaded (AO) nephropathy rats. In vitro, we observed these markers in HK-2 cells stimulated by albumin. We used TLR2 siRNA or the NF-κB inhibitor BAY 11-7082 to observe the influence of TNF-α and IL-6 expression caused by albumin overload. Finally, we studied these markers in non-IgA mesangioproliferative glomerulonephritis (MsPGN) patients with different levels of proteinuria. It was demonstrated that expression of TLR2, MyD88 and NF-κB were significantly increased in AO rats and in non-IgA MsPGN patients with high levels of proteinuria, and TNF-α and IL-6 expressions were increased after NF-κB activation. Furthermore, TNF-α and IL-6 expression was positively correlated with the level of proteinuria. Albumin-overload induced TNF-α and IL-6 secretions by the TLR2–MyD88–NF-κB pathway activation, which could be attenuated by the TLR2 siRNA or BAY 11-7082 in HK-2 cells. In summary, we demonstrated that proteinuria may exhibit an endogenous danger-associated molecular pattern (DAMP) that induces tubulointerstitial inflammation via the TLR2–MyD88–NF-κB pathway activation.  相似文献   

3.
4.
Propofol exhibits neuroprotective effects against hypoxic–ischemic brain injury, but the underlying mechanisms are still not clear. Toll-like receptor 4 (TLR4) plays a considerable role in the induction of innate immune and inflammatory responses. The purposes of this study are to investigate the effect of propofol on the oxygen and glucose deprivation (OGD)/reoxygenation (OGD/R) BV2 microglia and to explore the role of TLR4/myeloid differentiation protein 88 (MyD88)/nuclear factor-kappa B (NF-κB) pathway in the neuroprotective effects of propofol. BV2 microglia were placed into an airtight chamber and in glucose-free medium for OGD/reoxygenation. Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide assay. TLR4 and its downstream signaling molecules, MyD88 and NF-κB expressions were detected by Western blotting. Level of tumor necrosis factor alpha (TNF-α) in culture medium was determined with enzyme-linked immunosorbent assay. BV2 microglia apoptosis was determined by flow cytometry. We found that pretreatment with propofol significantly alleviated the hypoxic injury in BV2 microglia. Propofol inhibited upregulation of TLR4, MyD88, and NF-κB expressions in BV2 microglia exposed to OGD/reoxygenation. Propofol pretreatment also significantly reduced the production of TNF-α and apoptosis in OGD/reoxygenation BV2 microglia. The results indicated that TLR4 and its downstream MyD88-dependent signaling pathway contributed to neuroprotection of propofol to microglia exposed to OGD/reoxygenation.  相似文献   

5.
Odontoblasts are the first-line defense cells against invading microorganisms. Toll-like receptors (TLRs) play a crucial role in innate immunity, and TLR9 is involved in the recognition of microbial DNA. This study aimed to investigate whether odontoblasts can respond to CpG DNA and to determine the intracellular signaling pathways triggered by CpG DNA. We found that the mouse odontoblast-like cell line MDPC-23 constitutively expressed TLR9. Exposure to CpG ODN induced a potent proinflammatory response based on an increase of IL-6 and TNF-α expression. Pretreatment with an inhibitory MyD88 peptide or a specific inhibitor for TLR9, NF-κB or IκBα markedly inhibited CpG ODN-induced IL-6 and TNF-α expression. Moreover, the CpG ODN-mediated increase of κB-luciferase activity in MDPC-23 cells was suppressed by the overexpression of dominant negative mutants of TLR9, MyD88 and IκBα, but not by the dominant negative mutant of TLR4. This result suggests a possible role for the CpG DNA-mediated immune response in odontoblasts and indicates that TLR9, MyD88 and NF-κB are involved in this process.  相似文献   

6.
7.
Oral administration of Clostridium butyricum as probiotic is increasingly gaining importance in the treatment of diarrhea and the improvement of animal performance. However, the mechanisms of host cell receptor recognition of C. butyricum and the downstream immune signaling pathways leading to these benefits remain unclear. The objective of this study was to analyze the mechanisms involved in C. butyricum induction of the toll-like receptor (TLR) signaling. Knockdown of myeloid differentiation primary response protein 88 (MyD88) expression using small interfering RNA in this manner did not affect C. butyricum-induced elevated levels of nuclear factor κB (NF-κB), interleukin-8 (IL-8), IL-6, and tumor necrosis factor alpha (TNF-α), suggesting a MyD88-independent route to TLR signaling transduction. However, a significant reduction in the levels of NF-κB, IL-8, IL-6, and TNF-α was evident in the absence of TLR2 expression, implying the need for TLR2 in C. butyricum recognition. Hence, C. butyricum activates TLR2-mediated MyD88-independent signaling pathway in human epithelial cells, which adds to our understanding of the molecular mechanisms of this probiotic action on gut epithelium.  相似文献   

8.
The precise mechanism(s) by which intracellular TOLL-like receptors (TLRs) become activated by their ligands remains unclear. Here, we report a molecular organizational G-protein coupled receptor (GPCR) signaling platform to potentiate a novel mammalian neuraminidase-1 (Neu1) and matrix metalloproteinase-9 (MMP-9) cross-talk in alliance with neuromedin B GPCR, all of which form a tripartite complex with TLR-7 and -9. siRNA silencing Neu1, MMP-9 and neuromedin-B GPCR in RAW-blue macrophage cells significantly reduced TLR7 imiquimod- and TLR9 ODN1826-induced NF-κB (NF-κB-pSer536) activity. Tamiflu, specific MMP-9 inhibitor, neuromedin B receptor specific antagonist BIM23127, and the selective inhibitor of whole heterotrimeric G-protein complex BIM-46174 significantly block nucleic acid-induced TLR-7 and -9 MyD88 recruitment, NF-κB activation and proinflammatory TNFα and MCP-1 cytokine responses. For the first time, Neu1 clearly plays a central role in mediating nucleic acid-induced intracellular TLR activation, and the interactions involving NMBR–MMP9–Neu1 cross-talk constitute a novel intracellular TLR signaling platform that is essential for NF-κB activation and pro-inflammatory responses.  相似文献   

9.
Acanthamoeba keratitis (AK) is a vision-threatening corneal infection that is intimately associated with contact lens use which leads to hypoxic conditions on the corneal surface. However, the effect of hypoxia on the Acanthamoeba-induced host inflammatory response of corneal epithelial cells has not been studied. In the present study, we investigated the effect of hypoxia on the Acanthamoeba-induced production of inflammatory mediators interleukin-8 (IL-8) and interferon-β (IFN-β) in human corneal epithelial cells and then evaluated its effects on the Toll-like receptor 4 (TLR4) signaling, including TLR4 and myeloid differentiation primary response gene (88) (MyD88) expression as well as the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and extracellular signal-regulated kinases 1/2 (ERK1/2). We then studied the effect of hypoxia on a TLR4-specific inflammatory response triggered by the TLR4 ligand lipopolysaccharide (LPS). Our data showed that hypoxia significantly decreased the production of IL-8 and IFN-β. Furthermore, hypoxia attenuated Acanthamoeba-triggered TLR4 expression as well as the activation of NF-κB and ERK1/2, indicating that hypoxia abated Acanthamoeba-induced inflammatory responses by affecting TLR4 signaling. Hypoxia also inhibited LPS-induced IL-6 and IL-8 secretion, myeloid differentiation primary response gene (88) MyD88 expression and NF-κB activation, confirming that hypoxia suppressed the LPS-induced inflammatory response by affecting TLR4 signaling. In conclusion, our results demonstrated that hypoxia attenuated the host immune and inflammatory response against Acanthamoeba infection by suppressing TLR4 signaling, indicating that hypoxia might impair the host cell's ability to eliminate the Acanthamoeba invasion and that hypoxia could enhance cell susceptibility to Acanthamoeba infection. These results may explain why contact lens use is one of the most prominent risk factors for AK.  相似文献   

10.
The novel biological effect of statins in alleviating myocardium fibrosis following infarction has been increasingly recognized, yet the underlying mechanisms are not fully understood. The purpose of this study was to characterize the effect of simvastatin on myocardial fibrosis and collagen I deposition in the non-infarcted region after myocardial infarction (MI) and to identify the role of NF-κB and osteopontin in simvastatin-mediated inhibition of post-MI collagen over-expression. A rat model of MI was generated by ligating the left anterior descending coronary artery. The rats surviving the MI operation were randomly divided into the following 3 groups: myocardial infarction (MI, vehicle), simvastatin (Sim, 30 mg·kg-1·day-1), and pyrrolidine dithiocarbamate (PDTC, an inhibitor of NF-κB, 100 mg·kg-1·day-1). Four weeks after MI, cardiac function, mRNAs, and protein expression in non-infarcted myocardium were analyzed. Myocardial fibrosis and collagen I over-expression were observed following MI, accompanied by an increase of NF-κB and osteopontin. Simvastatin improved post-MI left ventricular dysfunction and ameliorated post-MI associated changes to several cardiac parameters, including the left ventricular end diastolic pressure (LVEDP), the maximal rate of pressure development (+dP/dtmax), and the maximal rate of pressure decline (-dP/dtmax). Concurrently, simvastatin significantly suppressed the over-expression of NF-κB, osteopontin, and collagen I in the non-infarcted region following MI. Inhibition of NF-κB by PDTC also reduced osteopontin over-expression and excessive collagen I production and improved the above functional myocardial parameters. These results show that post-MI myocardial fibrosis and collagen I over-expression in the non-infarcted region is associated with activation of NF-κB and osteopontin up-regulation. The anti-fibrotic effect of simvastatin following MI is associated with the attenuation of the expression of osteopontin and NF-κB. The inhibition of NF-κB activation could be the process upstream of osteopontin suppression in the simvastatin-mediated effect.  相似文献   

11.
12.
Toll-like receptors (TLRs) are important in a variety of inflammatory diseases including acute cardiac disorders. TLR4 innate signaling regulates the synthesis of anti-inflammatory cytokine, interleukin-10 (IL-10) upon TLR4 agonists’ re-stimulation. Anti-apoptotic action of IL-10 in cardiac dysfunction is generally accepted but its protective mechanism through TLR4 is not yet understood. We studied the effect of IL-10 in the activation of TLR4 downstream signals leading to cardiomyocytes survival. IL-10 caused a significant increase in the expression of CD14, MyD88 and TLR4. TLR4 activation led to the translocation of the interferon regulatory factor 3 (IRF3) into the nucleus. Phosphorylation of IRF3 enhanced mRNA synthesis for IL-1β but not TNF-α and was elevated even after removal of IL-10 stimulation. Furthermore, degradation of inhibitory kappa B (IκB) kinase (Ikk) suggested that IκBβ was the main activating kinase for IRF3-regulated NF-κB activation and phosphorylation of p65. Phosphorylated NF-κB p65 was translocated into the nucleus. Concomitantly, an increase in Bcl-xL activity inhibited Bax and the proteolytic activity of caspase 3 as well as a decrease in PARP cleavage. An inhibition of MyD88, modulated the above listed responses to IL-10 as there was a decrease in TLR4 and IRF3 and an increase in TNF-α mRNA. This was associated with a decrease in NF-κB p65, Bcl-xL mRNA and protein levels as well as there was an activation of Bax and PARP cleavage independent of caspase 3 activation. These data in cardiomyocytes suggest that IL-10 induced anti-apoptotic signaling involves upregulation of TLR4 through MyD88 activation.  相似文献   

13.
14.
Liu Y  Xiao Y  Li Z 《Cytokine》2011,55(2):229-236
Recent studies have demonstrated that P2X7 plays a critical role in the immune system. Here, our results showed that P2X7 activated a NF-κB - but not an IFN-β-dependent luciferase reporter gene in HEK293T cells. P2X7 was involved in the LPS- and ATP-induced NF-κB activation but did not significantly impact the response to Zymosan in RAW264.7 cells. The activation of NF-κB and IFN-β induced by myeloid differentiation primary-response protein 88 (MyD88) was enhanced by P2X7 co-expression. The siRNA silencing MyD88 almost abolished the NF-κB activation induced by P2X7, and co-immunoprecipitation showed that P2X7 interacted with MyD88. The amino acids in the C-terminus, especially the LPS-binding region of P2X7, were critical for the cellular localization and immune function of P2X7. P2X7ΔC (190 amino acids deleted in the C-terminus) and P2X7 G586A variants localized throughout the cytoplasma with a little aggregation, which differs from the cell membrane localization of wild type P2X7. Both of them could not localize to Golgi or endoplasmic reticulum. P2X7ΔC and P2X7 G586A had impaired proteolytic cleavage of caspase-1 into the functional p20 subunit, which can activate pro-inflammatory cytokines such as IL-1β. P2X7 G586A also showed a slight interaction with MyD88 in our co-immunoprecipitation experiment. This interaction might result in the attenuated activation of NF-κB and IFN-β induced by MyD88.  相似文献   

15.
CD300F is known to exhibit inhibitory activity in myeloid cells through its intracellular ITIM. To investigate the effect of CD300F stimulation on TLR signaling, the human acute monocytic leukemia cell line THP-1 was treated with CD300F-specific mAbs or two synthetic peptides that represented the ITIM-like domains of CD300F. Treatment with these agents blocked TLR2-, 3-, 4-, and 9-mediated expression of proinflammatory mediators such as IL-8 and matrix metalloproteinase-9. The luciferase reporter assay in 293T cells and Western blot analysis of THP-1 cells revealed that these inhibitory actions were effective in pathways involving MyD88 and/or TRIF of TLR signaling and associated with marked suppression of IκB kinase activation, phosphorylation/degradation of IκB, and subsequent activation of NF-κB. Use of specific inhibitors and immunoprecipitation analysis further indicated that the inhibitory effects were mediated by Src homology 2 domain-containing phosphatase-1, a protein tyrosine phosphatase with inhibitory activity in hematopoietic cells. These data indicate that CD300F is an active regulator of TLR-mediated macrophage activation through its association with Src homology 2 domain-containing phosphatase-1 and that the synthetic peptides can be applied for the regulation of immune responses that are induced by TLRs.  相似文献   

16.
17.
Xiao Z  Yang M  Fang L  Lv Q  He Q  Deng M  Liu X  Chen X  Chen M  Xie X  Hu J 《Cell biology international》2012,36(7):625-633
Extracellular nucleotides mediate a wide range of physiological effects by interacting with plasma membrane P2 purinergic receptors. P2 receptors are expressed in certain kinds of stem cells, and function to induce cytokine expression and to modulate cell proliferation. We have analysed the expression and the function of P2 receptors in human umbilical cord blood-derived EPCs (endothelial progenitor cells). EPCs expressed P2X4,6,7 and P2Y2,4,11,13,14 receptors and extracellular ATP inhibited EPCs proliferation. As in a previous study, EPCs expressed functional TLR4 (Toll-like receptor 4) and activation of TLR4 by LPS (lipopolysaccharide) evoked a pro-inflammatory immune response. When human EPCs were stimulated with LPS and nucleotides, ATP or UTP inhibited the expression of pro-inflammatory cytokines including MCP-1 (monocyte chemoattractant protein-1), IFNα (interferon α), TNFα (tumour necrosis factor α) and adhesion molecule VCAM-1 (vascular cell adhesion molecule 1) induced by LPS. ATP and UTP also down-regulated the gene expression of TLR4, CD14 and MyD88 (myeloid differentiation factor 88), a TLR adaptor molecule, and protein expression of CD14 and MyD88. Moreover, the phosphorylation of NF-κB (nuclear factor κB) p65 induced by TLR4 activation was inhibited partly by ATP or UTP at concentrations of 1-5 μM. These results suggest that extracellular nucleotides negatively regulate EPCs proliferation and TLR4 signalling.  相似文献   

18.
Blockade of excessive Toll-like receptor (TLR) signaling is a therapeutic approach being actively pursued for many inflammatory diseases. Here we report a Chinese herb-derived compound, sparstolonin B (SsnB), which selectively blocks TLR2- and TLR4-mediated inflammatory signaling. SsnB was isolated from a Chinese herb, Spaganium stoloniferum; its structure was determined by NMR spectroscopy and x-ray crystallography. SsnB effectively inhibited inflammatory cytokine expression in mouse macrophages induced by lipopolysaccharide (LPS, a TLR4 ligand), Pam3CSK4 (a TLR1/TLR2 ligand), and Fsl-1 (a TLR2/TLR6 ligand) but not that by poly(I:C) (a TLR3 ligand) or ODN1668 (a TLR9 ligand). It suppressed LPS-induced cytokine secretion from macrophages and diminished phosphorylation of Erk1/2, p38a, IκBα, and JNK in these cells. In THP-1 cells expressing a chimeric receptor CD4-TLR4, which triggers constitutive NF-κB activation, SsnB effectively blunted the NF-κB activity. Co-immunoprecipitation showed that SsnB reduced the association of MyD88 with TLR4 and TLR2, but not that with TLR9, in HEK293T cells and THP-1 cells overexpressing MyD88 and TLRs. Furthermore, administration of SsnB suppressed splenocyte inflammatory cytokine expression in mice challenged with LPS. These results demonstrate that SsnB acts as a selective TLR2 and TLR4 antagonist by blocking the early intracellular events in the TLR2 and TLR4 signaling. Thus, SssB may serve as a promising lead for the development of selective TLR antagonistic agents for inflammatory diseases.  相似文献   

19.
Asp(299)Gly (D299G) and, to a lesser extent, Thr(399)Ile (T399I) TLR4 polymorphisms have been associated with gram-negative sepsis and other infectious diseases, but the mechanisms by which they affect TLR4 signaling are unclear. In this study, we determined the impact of the D299G and T399I polymorphisms on TLR4 expression, interactions with myeloid differentiation factor 2 (MD2), LPS binding, and LPS-mediated activation of the MyD88- and Toll/IL-1R resistance domain-containing adapter inducing IFN-β (TRIF) signaling pathways. Complementation of human embryonic kidney 293/CD14/MD2 transfectants with wild-type (WT) or mutant yellow fluorescent protein-tagged TLR4 variants revealed comparable total TLR4 expression, TLR4-MD2 interactions, and LPS binding. FACS analyses with anti-TLR4 Ab showed only minimal changes in the cell-surface levels of the D299G TLR4. Cells transfected with D299G TLR4 exhibited impaired LPS-induced phosphorylation of p38 and TANK-binding kinase 1, activation of NF-κB and IFN regulatory factor 3, and induction of IL-8 and IFN-β mRNA, whereas T399I TLR4 did not cause statistically significant inhibition. In contrast to WT TLR4, expression of the D299G mutants in TLR4(-/-) mouse macrophages failed to elicit LPS-mediated induction of TNF-α and IFN-β mRNA. Coimmunoprecipitation revealed diminished LPS-driven interaction of MyD88 and TRIF with the D299G TLR4 species, in contrast to robust adapter recruitment exhibited by WT TLR4. Thus, the D299G polymorphism compromises recruitment of MyD88 and TRIF to TLR4 without affecting TLR4 expression, TLR4-MD2 interaction, or LPS binding, suggesting that it interferes with TLR4 dimerization and assembly of intracellular docking platforms for adapter recruitment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号