首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Excessive proliferation and migration of vascular smooth muscle cells (SMCs) participate in atherosclerotic plaque growth. In this study, we investigated whether SMCs from vessels with different atherogenicity exhibit distinct growth and migratory potential and investigated the underlying mechanisms. In fat-fed rabbits, we found increased cell proliferation and atheroma formation in the aortic arch versus the femoral artery. When examined in culture, SMCs isolated from the aortic arch (ASMCs) displayed a greater capacity for inducible proliferation and migration than paired cultures of femoral artery SMCs. Two lines of evidence suggested that distinct regulation of the growth suppressor p27(Kip1) (p27) contributes to establishing these phenotypic dissimilarities. First, p27 expression was comparably lower in ASMCs, which exhibited a higher fraction of p27 phosphorylated on Thr-187 and ubiquitinated. Second, forced p27 overexpression in ASMCs impaired their proliferative and migratory potential. We found that platelet-derived growth factor-BB-dependent induction of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway was comparably higher in ASMCs. Importantly, pharmacological inhibition of MAPKs increased p27 expression and attenuated ASMC proliferation and migration. In contrast, forced MAPK activation diminished p27 expression and markedly augmented femoral artery SMC proliferation and migration. We propose that intrinsic differences in the regulation of MAPKs and p27 play an important role in creating variance in the proliferative and migratory capacity of vascular SMCs, which might in turn contribute to establishing regional variability in atherogenicity.  相似文献   

2.
Proliferation and migration of vascular smooth muscle cells (SMCs) are important processes involved in the pathogenesis of vascular disorders such as atherosclerosis and post-angioplasty restenosis. Here we demonstrate that proliferation and migration of specific SMC subtypes is mitogen-activated protein (MAP) kinase-dependent. WKY12-22 SMCs derived from the aortae of 12 day-old pup rats proliferate and migrate faster than WKY3M-22 SMCs derived from the aortae of adult rats. WKY12-22 and WKY3M-22 cells equally expressed the active forms of phospho (Thr(183)/Tyr(185))-c-Jun N-terminal kinase (JNK) and phospho (Tyr(182))-p38, whereas the activity of extracellular signal-regulated kinase (ERK) was greater in WKY12-22 cells compared with WKY3M-22 cells. Proliferation of both SMC subtypes was attenuated by PD98059, SP600125 and SB202190, inhibitors of ERK, JNK, and p38, respectively. However, inhibition of PD98059 had a more profound effect on WKY12-22 SMCs. Furthermore, migration of WKY12-22 and WKY3M-22 cells was inhibited by SP600125 and SB202190, however, PD98059 failed to influence migration of either SMC subtype. Hence, migration of both SMC subtypes is JNK- and p38-dependent, but not ERK-dependent. These findings demonstrate that SMC heterogeneity is mediated, at least in part, by the activity of specific MAP kinase subtypes.  相似文献   

3.
The molecular mechanisms behind phenotypic modulation of smooth muscle cells (SMCs) remain unclear. In our recent paper, we reported the establishment of novel culture system of gizzard SMCs (Hayashi, K., H. Saga, Y. Chimori, K. Kimura, Y. Yamanaka, and K. Sobue. 1998. J. Biol. Chem. 273: 28860-28867), in which insulin-like growth factor-I (IGF-I) was the most potent for maintaining the differentiated SMC phenotype, and IGF-I triggered the phosphoinositide 3-kinase (PI3-K) and protein kinase B (PKB(Akt)) pathway. Here, we investigated the signaling pathways involved in de-differentiation of gizzard SMCs induced by PDGF-BB, bFGF, and EGF. In contrast to the IGF-I-triggered pathway, PDGF-BB, bFGF, and EGF coordinately activated ERK and p38MAPK pathways. Further, the forced expression of active forms of MEK1 and MKK6, which are the upstream kinases of ERK and p38MAPK, respectively, induced de-differentiation even when SMCs were stimulated with IGF-I. Among three growth factors, PDGF-BB only triggered the PI3-K/PKB(Akt) pathway in addition to the ERK and p38MAPK pathways. When the ERK and p38MAPK pathways were simultaneously blocked by their specific inhibitors or an active form of either PI3-K or PKB(Akt) was transfected, PDGF-BB in turn initiated to maintain the differentiated SMC phenotype. We applied these findings to vascular SMCs, and demonstrated the possibility that the same signaling pathways might be involved in regulating the vascular SMC phenotype. These results suggest that changes in the balance between the PI3-K/PKB(Akt) pathway and the ERK and p38MAPK pathways would determine phenotypes of visceral and vascular SMCs. We further reported that SMCs cotransfected with active forms of MEK1 and MKK6 secreted a nondialyzable, heat-labile protein factor(s) which induced de-differentiation of surrounding normal SMCs.  相似文献   

4.
5.
The focal adhesion (FAK) non-receptor protein-tyrosine kinase (PTK) links both extracellular matrix/integrin and growth factor stimulation to intracellular signals promoting cell migration. Here we show that both transient and stable overexpression of the FAK C-terminal domain termed FRNK (FAK-related non-kinase) inhibits serum and platelet-derived growth factor (PDGF)-BB-induced vascular smooth muscle cell (SMC) migration in wound healing and in vitro Boyden Chamber chemotaxis assays, respectively. Expression of FRNK, but not a point mutant of FRNK (FRNK L1034S), disrupted the formation of a complex containing both FAK and the activated PDGF-beta receptor and resulted in reduced tyrosine phosphorylation of endogenous FAK at the Tyr-397 binding site for Src family PTKs. As demonstrated using FAK-deficient and FAK-reconstituted fibroblasts, FAK positively contributed to PDGF-BB-stimulated ERK2/MAP kinase activity, and in SMCs, ERK2/MAP kinase activity was required for PDGF-BB-stimulated chemotaxis. Stable expression of FRNK but not FRNK L1034S expression in SMCs lowered the extent and duration of stimulated ERK2/MAP kinase activation at low but not at high PDGF-BB concentrations. Importantly, stable expression of FRNK in SMCs did not affect SMC morphology or proliferation in culture. Because the increased migration of vascular SMCs in response to extracellular matrix proteins and growth factors contributes to neointima formation, our results show that FAK inhibition by FRNK expression may provide a novel approach to regulate abnormal vascular SMC migration in vivo.  相似文献   

6.
Atheroma formation and restenosis following percutaneous vascular intervention involve the growth and migration of vascular smooth muscle cells (SMCs) into neointimal lesions, in part due to changes in the extracellular matrix. While some clinical studies have suggested that, in comparison to non-diabetics, β3 integrin inhibition in diabetic patients confers protection from restenosis, little is known regarding the role of β3 integrin inhibition on SMC responses in this context. To understand the molecular mechanisms underlying integrin-mediated regulation of SMC function in diabetes, we examined SMC responses in diabetic mice deficient in integrin β3 and observed that the integrin was required for enhanced proliferation, migration and extracellular regulated kinase (ERK) activation. Hyperglycemia-enhanced membrane recruitment and catalytic activity of PKCβ in an integrin β3-dependent manner. Hyperglycemia also promoted SMC filopodia formation and cell migration, both of which required αVβ3, PKCβ, and ERK activity. Furthermore, the integrin–kinase association was regulated by the αVβ3 integrin ligand thrombospondin and the integrin modulator Rap1 under conditions of hyperglycemia. These results suggest that there are differences in SMC responses to vascular injury depending on the presence or absence of hyperglycemia and that SMC response under hyperglycemic conditions is largely mediated through β3 integrin signaling.  相似文献   

7.
The 12-lipoxygenase (12-LO) pathway of arachidonic acid metabolism stimulates cell growth and metastasis of various cancer cells and the 12-LO metabolite, 12(S)-hydroxyeicosatetraenoic acid [12(S)-HETE], enhances proliferation of aortic smooth muscle cells (SMCs). However, pulmonary vascular effects of 12-LO have not been previously studied. We sought evidence for a role of 12-LO and 12(S)-HETE in the development of hypoxia-induced pulmonary hypertension. We found that 12-LO gene and protein expression is elevated in lung homogenates of rats exposed to chronic hypoxia. Immunohistochemical staining with a 12-LO antibody revealed intense staining in endothelial cells of large pulmonary arteries, SMCs (and possibly endothelial cells) of medium and small-size pulmonary arteries and in alveolar walls of hypoxic lungs. 12-LO protein expression was increased in hypoxic cultured rat pulmonary artery SMCs. 12(S)-HETE at concentrations as low as 10(-5) microM stimulated proliferation of pulmonary artery SMCs. 12(S)-HETE induced ERK 1/ERK 2 phosphorylation but had no effect on p38 kinase expression as assessed by Western blotting. 12(S)-HETE-stimulated SMC proliferation was blocked by the MEK inhibitor PD-98059, but not by the p38 MAPK inhibitor SB-202190. Hypoxia (3%)-stimulated pulmonary artery SMC proliferation was blocked by both U0126, a MEK inhibitor, and baicalein, an inhibitor of 12-LO. We conclude that 12-LO and its product, 12(S)-HETE, are important intermediates in hypoxia-induced pulmonary artery SMC proliferation and may participate in hypoxia-induced pulmonary hypertension.  相似文献   

8.
We have previously reported that platelet-activating factor (PAF) is present in very high levels in the ovine fetal lung and circulation and that PAF serves as an important physiological vasoconstrictor of the pulmonary circulation in utero. However, it is not known whether PAF stimulates pulmonary vascular smooth muscle cell (SMC) proliferation. In this study, we used ovine fetal pulmonary venous SMCs as our model system to study the effects and mechanisms of action of PAF on SMC proliferation. We found that PAF induced SMC proliferation in a dose-dependent manner. PAF also stimulated activation of both ERK and p38 but not c-Jun NH(2) terminal kinase (JNK) mitogen-activated protein (MAP) kinase pathways. PAF (10 nM) induced phosphorylation of epidermal growth factor receptor (EGFR). Specific inhibition of EGFR by AG-1478 and by the expression of a dominant-negative EGFR mutant in SMCs attenuated PAF-stimulated cell proliferation. Inhibition of heparin-binding EGF-like growth factor (HB-EGF) release by CRM-197 and inhibition of matrix metalloproteinases (MMP) by GM-6001 abolished PAF-induced MAP kinase activation and cell proliferation. Increased alkaline phosphatase (AP) activity after PAF treatment in AP-HB-EGF fusion construct-transfected SMCs indicated that PAF induced the release of HB-EGF within 1 min. Gelatin zymography data showed that PAF stimulated MMP-2 activity and MMP-9 activity within 1 min. These results suggest that PAF promotes pulmonary vascular SMC proliferation via transactivation of EGFR through MMP activation and HB-EGF, resulting in p38 and ERK activation and that EGFR transactivation is essential for the mitogenic effect of PAF in pulmonary venous SMC.  相似文献   

9.
10.
11.
The LIM-only protein FHL2, also known as DRAL or SLIM3, has a function in fine-tuning multiple physiological processes. FHL2 is expressed in the vessel wall in smooth muscle cells (SMCs) and endothelial cells and conflicting data have been reported on the regulatory function of FHL2 in SMC phenotype transition. At present the function of FHL2 in SMCs in vascular injury is unknown. Therefore, we studied the role of FHL2 in SMC-rich lesion formation. In response to carotid artery ligation FHL2-deficient (FHL2-KO) mice showed accelerated lesion formation with enhanced Ki67 expression compared with wild-type (WT)-mice. Consistent with these findings, cultured SMCs from FHL2-KO mice showed increased proliferation through enhanced phosphorylation of extracellular-regulated kinase-1/2 (ERK1/2) and induction of CyclinD1 expression. Overexpression of FHL2 in SMCs inhibited CyclinD1 expression and CyclinD1-knockdown blocked the enhanced proliferation of FHL2-KO SMCs. We also observed increased CyclinD1 promoter activity in FHL2-KO SMCs, which was reduced upon ERK1/2 inhibition. Furthermore, FHL2-KO SMCs showed enhanced migration compared with WT SMCs. In conclusion, FHL2 deficiency in mice results in exacerbated SMC-rich lesion formation involving increased proliferation and migration of SMCs via enhanced activation of the ERK1/2-CyclinD1 signaling pathway.  相似文献   

12.
Sun L  Zhang T  Yu X  Xin W  Lan X  Zhang D  Huang C  Du G 《FEBS letters》2011,585(17):2727-2734
Communication between endothelial and smooth muscle cells (SMCs) contributes to atherosclerosis induced by atherogenic factors, such as oxide LDL. Asymmetric dimethylarginine (ADMA), a newly found cardiovascular risk factor, accumulates in the culture medium of oxide LDL (oxLDL)-treated endothelial cells and positively correlates with atherosclerosis. This study demonstrates that ADMA mediates the communication between endothelial cells and SMCs induced by oxLDL leading to SMC migration. In addition, the present study suggests exogenous ADMA directly induces SMC migration via p38 and ERK1/2 MAPK signaling transduction way. Investigations to identify the factors regulating VSMC migration may provide novel insights into atherosclerosis and its complications.  相似文献   

13.
Crosstalk between the cyclic AMP-dependent protein kinase (PKA) and growth factor receptor signaling is one of many emerging concepts of crosstalk in signal transduction. Understanding of PKA crosstalk may have important implications for studies of crosstalk between other, less well known, signaling pathways. This review focuses on PKA crosstalk in arterial smooth muscle. Proliferation and migration of arterial smooth muscle cells (SMCs) contribute to the thickening of the blood vessel wall that occurs in many types of cardiovascular disease. PKA potently inhibits SMC proliferation by antagonizing the major mitogenic signaling pathways induced by growth factors in SMCs. PKA also inhibits growth factor-induced SMC migration. An intricate crosstalk between PKA and the mitogen-activated protein kinase (MAPK/ERK) pathway, the p70 S6 kinase pathway and cyclin-dependent kinases has been described. Further, PKA regulates expression of growth regulatory molecules. The result of PKA activation in SMCs is the potent inhibition of cell cycle traverse and SMC migration. In this review, we discuss recent advances in our understanding of the crosstalk between PKA and signaling pathways induced by growth factor receptors in SMCs, and where relevant, in other cell types in which interesting examples of PKA crosstalk have been described.  相似文献   

14.
We previously showed that ablation of caveolin-1 (Cav-1) gene expression in mice promotes neointimal hyperplasia in vivo, a phenomenon normally characterized by smooth muscle cell (SMC) migration and proliferation. Whether these defects are cell autonomous, i.e., due to loss of Cav-1 within SMCs or loss of Cav-1 expression in other adjacent cell types in vivo, remains unknown. Cav-1 has been shown to associate with receptors for many vasoactive factors on the SMC surface. Therefore, Cav-1 might be an important regulator of SMC proliferation, migration, and signal transduction. To mechanistically dissect the role of Cav-1 in SMC signaling, we isolated SMCs from the aortas (AoSMCs) of Cav-1-deficient (Cav-1(-/-)) mice and characterized these cells with respect to their proliferation, migration, and Ca(2+) response to an important vasoactive factor, endothelin-1 (ET-1). 5-Bromo-2'-deoxyuridine incorporation and a wound-healing assay showed an increase in proliferation and migration rates in Cav-1(-/-) compared with wild-type (Cav-1(+/+)) AoSMCs. Cav-1(-/-) AoSMCs demonstrated upregulation of phosphorylated ERK1/2, cyclin D1, and proliferating cell nuclear antigen and reduced expression of the cyclin-dependent kinase inhibitor p27(Kip1). The Ca(2+) response was examined in the presence of ET-1 and assessed by confocal microscopy with the Ca(2+)-sensitive fluorescent probe fluo 3. When treated with ET-1, Cav-1(-/-) AoSMCs exhibited a faster and larger increase in free intracellular Ca(2+) than Cav-1(+/+) cells. The ET-1-induced response in Cav-1(-/-) cells was mediated by the ET(B) receptor, as shown using the ET(B) receptor antagonist BQ-788 and the ET(A) receptor antagonist BQ-123. In Cav-1(-/-) cells, ET(A) receptor expression was reduced and ET(B) receptor expression was upregulated. Therefore, Cav-1 ablation increased the ET-1-induced Ca(2+) response in SMCs by altering the type and expression level of the ET receptor (i.e., receptor isoform switching). These data suggest a novel regulatory role for Cav-1 in SMCs with respect to their proliferation, migration, and Ca(2+)-mediated signaling.  相似文献   

15.
Platelet‐derived growth factor (PDGF) has been implicated in the pathogenesis of arterial atherosclerosis and venous neointimal hyperplasia. We examined the effects of PDGF isoforms on smooth muscle cells (SMCs) from arterial and venous origins in order to further understand the differential responsiveness of these vasculatures to proliferative stimuli. Serum‐starved human arterial and venous SMCs exhibited very different proliferative responses to PDGF isoforms. Whereas, proliferation of arterial SMCs was strongly stimulated by PDGF‐AA, venous SMCs showed no proliferative response to PDGF‐AA, but instead demonstrated a significantly greater proliferative response to PDGF‐BB than arterial SMCs. Part of this difference could be attributed to differences in PDGF receptors expression. There was a 2.5‐fold higher (P < 0.05) density of PDGF receptor‐α (PDGF‐Rα) and a 6.6‐fold lower (P < 0.05) density of PDGF‐Rβ expressed on arterial compared to venous SMCs. Concomitant with an increased proliferative response to PDGF‐AA in arterial SMCs was a marked PDGF‐Rα activation, enhanced phosphorylation of ERK1/2 and Akt, a transient activation of c‐Jun NH2‐terminal kinase (JNK), and a significant reduction in expression of the cell‐cycle inhibitor p27kip1. This pattern of signaling pathway changes was not observed in venous SMCs. No phosphorylation of PDGF‐Rα was detected after venous SMC exposure to PDGF‐AA, but there was enhanced phosphorylation of ERK1/2 and Akt in venous SMCs, similar to that seen in the arterial SMCs. PDGF‐BB stimulation of venous SMC resulted in PDGF‐Rβ activation as well as transactivation of epidermal growth factor receptor (EGF‐R); transactivation of EGF‐R was not observed in arterial SMCs. These results may provide an explanation for the differential susceptibility to proliferative vascular diseases of arteries and veins. J. Cell. Biochem. 112: 289–298, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
The glycosaminoglycan hyaluronan (HA) modulates cell proliferation and migration, and it is involved in several human vascular pathologies including atherosclerosis and vascular restenosis. During intima layer thickening, HA increases dramatically in the neointima extracellular matrix. Aging is one of the major risk factors for the insurgence of vascular diseases, in which smooth muscle cells (SMCs) play a role by determining neointima formation through their migration and proliferation. Therefore, we established an in vitro aging model consisting of sequential passages of human aortic smooth muscle cells (AoSMCs). Comparing young and aged cells, we found that, during the aging process in vitro,HA synthesis significantly increases, as do HA synthetic enzymes (i.e. HAS2 and HAS3), the precursor synthetic enzyme (UDP-glucose dehydrogenase), and the HA receptor CD44. In aged cells, we also observed increased CD44 signaling that consisted of higher levels of phosphorylated MAP kinase ERK1/2. Further, aged AoSMCs migrated faster than young cells, and such migration could be modulated by HA, which alters the ERK1/2 phosphorylation. HA oligosaccharides of 6.8 kDa and an anti-CD44 blocking antibody prevented ERK1/2 phosphorylation and inhibited AoSMCs migration. These results indicate that, during aging, HA can modulate cell migration involving CD44-mediated signaling through ERK1/2. These data suggest that age-related HA accumulation could promote SMC migration and intima thickening during vascular neointima formation.  相似文献   

17.
IL-6, a proinflammatory cytokine, has been implicated in the development of vascular diseases. We previously demonstrated that mechanical stress can initiate signaling pathways leading to smooth muscle cell (SMC) proliferation and apoptosis, but little is known concerning cyclic stress-induced inflammatory response. To explore the role of stretch in the upregulation of cytokine expression in SMCs we performed RNase protection assay for a panel of cytokines and found that mechanical stress resulted in a time-dependent induction of IL-6 mRNA but not other cytokines, e.g., IL-1alpha, IL-1beta, IL-6, IL-10, IL-12p35, IL-12p40, IL-18, IFN-gamma, and macrophage migration inhibitory factor (MIF). This induction also correlated with elevated IL-6 protein levels in the supernatant. Pretreatment of the cells with NF-kappaB inhibitors inhibited NF-kappaB activity and resulted in marked inhibition (50%) of IL-6 protein. Moreover, SMC lines stably expressing dominant-negative Ras (RasN17) or Rac (RacN17) exhibited a remarkable decrease in p38 MAPK activity and IL-6 mRNA induction by mechanical stress. Furthermore, a significant inhibition of 30 and 40% in IL-6 protein was observed in SMCs pretreated with inhibitors of p38 MAPK and ERK1/2, respectively, but not JNK. Interestingly, SMCs isolated from PKC-delta-deficient mice exhibited higher levels of IL-6 compared with wild-type cells. Finally, high levels of IL-6 expression were observed in atherosclerotic lesions of vein bypass grafts, which are related to altered biomechanical stress. Our findings demonstrate that biomechanical stress-induced IL-6 expression occurs via a mechanism that involves Ras/Rac/p38 MAPK/NF-kappaB/NF-IL6 signaling pathways, which is downregulated by PKC-delta, and suggest that modulation of this event contributes to the pathogenesis of atherosclerosis.  相似文献   

18.
19.
Caveolin-1 deficiency stimulates neointima formation during vascular injury   总被引:3,自引:0,他引:3  
Neointima formation is a process characterized by smooth muscle cell (SMC) proliferation and extracellular matrix deposition in the vascular intimal layer. Here, we critically evaluate the role of caveolin-1 (Cav-1) in the pathogenesis of neointima formation. Cav-1 and caveolae organelles are particularly abundant in SMCs, where they are thought to function in membrane trafficking and signal transduction events. To directly evaluate the role of Cav-1 in the pathogenesis of neointimal lesions, we used Cav-1-deficient (Cav-1 -/-) mice as a model system. The right common carotid artery of wild-type and Cav-1 -/- mice was ligated just proximal to its bifurcation. Specimens were then harvested 4-weeks postligation and processed for morphometric and immunohistochemical analyses. The carotids of Cav-1 -/- mice showed significantly more intimal hyperplasia with subtotal luminal obstruction, as compared to wild-type mice. These neointimal lesions consisted mainly of SMCs. Mechanistically, neointimal lesions derived from Cav-1 -/- mice exhibited higher levels of phospho-p42/44 MAP kinase and cyclin D1 immunostaining, consistent with the idea that Cav-1 functions as a negative regulator of signal transduction. A significant increase in phospho-Rb (Ser780) immunostaining was also observed, in line with the upregulation of cyclin D1. In conclusion, using a carotid artery blood-flow cessation model, we show that genetic ablation of Cav-1 in mice stimulates SMC proliferation (neointimal hyperplasia), with concomitant activation of the p42/44 MAP kinase cascade and upregulation of cyclin D1. Importantly, our current study is the first to investigate the role of Cav-1 in SMC proliferation in the vascular system using Cav-1 -/- mice.  相似文献   

20.
Multiple steps, including the migration of vascular smooth muscle cells (SMCs), are involved in the pathogenesis of atherosclerosis. To discover genes which are involved in these steps, we screened mutant mouse lines established by the exchangeable gene trap method utilizing X-gal staining during their embryonic development. One of these lines showed strong reporter gene expression in the vitelline vessels of yolk sacs at embryonic day (E) 12.5. The trap vector was inserted into the fifth intron of alpha/beta hydrolase domain containing 2 (Abhd2) gene which was shown to be expressed in vascular and non-vascular SMCs of adult mice. Although homozygous mutant mice were apparently normal, enhanced SMC migration in the explants SMCs culture and marked intimal hyperplasia after cuff placement were observed in homozygous mice in comparison with wild-type mice. Our results show that Abhd2 is involved in SMC migration and neointimal thickening on vascular SMCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号