首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Choriocarcinoma (CC) is a trophoblast tumor prone to early distant organ metastases. At present, the main treatment for CC is chemotherapy, but chemotherapy resistance readily occurs and leads to treatment failure. H19 is a long noncoding RNA, and its abnormal expression has been found in various tumors, including CC. H19 is also considered to be related to the drug resistance mechanism of the same cancers. To investigate the role of H19 in drug-resistant CC cells, the following experiments were designed. We used human CC cell line JEG-3 to establish cell lines resistant to methotrexate and 5-fluorouracil (JEG-3/MTX and JEG-3/5-FU) and detected the expression of H19 in JEG-3, JEG-3/MTX, JEG-3/5-FU cells, JEG-3 with MTX, and JEG-3 with 5-FU. We found that the expression of H19 in the JEG-3/MTX and JEG-3/5-FU cells were significantly higher than that in JEG-3 cells. JEG-3 cells were treated with MTX or 5-FU for and quantitative real-time polymerase chain reaction assay revealed that H19 messenger RNA expression increased. Furthermore, after H19 was knocked out, the drug resistance index of the JEG-3/MTX and JEG-3/5-FU cells decreased; the proliferation, migration, and invasion ability diminished significantly; and apoptosis increased significantly. Finally, we detected the total and phosphorylation protein expression of phosphatidylinositol-3-kinase (PI3K), protein kinase B (AKT), and mammalian target of rapamycin (mTOR) in the JEG-3/MTX and JEG-3/5-FU cells. The total protein of PI3K, AKT, and mTOR in the H19 knockout resistant cells showed no significant change relative to those in the H19 non-knockout resistant cells, whereas the phosphorylated proteins of PI3K, AKT, and mTOR were significantly decreased. Phosphorylated proteins of PI3K, AKT, and mTOR in the JEG-3/MTX and JEG-3/5-FU cells were significantly higher than that in JEG-3 cells. After using inhibition of phosphorylated PI3K/AKT/mTOR, the proliferation, migration, and invasion ability of the JEG-3/MTX and JEG-3/5-FU cells diminished significantly; and apoptosis increased significantly. On the basis of the above experiments, we concluded that H19 is related to the drug resistance of CC, and the knockout of H19 can reduce the drug resistance of resistant CC cells; and decrease the proliferative, migratory, and invasive ability; and increase the apoptosis. PI3K/AKT/mTOR pathway might be involved in H19-mediated effects. H19 is expected to be a therapeutic target for the treatment of drug-resistant chorionic carcinoma.  相似文献   

2.
Tumor suppressor long noncoding RNA maternally expressed gene 3 (lncRNA MEG3) exists in various cancers. Nonetheless, the functions of lncRNA MEG3 in choriocarcinoma (CC) are still not well studied. We explored the effects of lncRNA MEG3 on human CC JEG-3 and BeWo cells. lncRNA MEG3 was overexpressed, and the effects of lncRNA MEG3 on cell viability, proliferation, apoptosis, migration, and invasion were assessed by the cell counting kit-8 assay, western blot analysis, flow cytometry (plus western blot analysis), and transwell assay (plus western blot analysis), respectively. Then, the expression level of miR-211 was detected by real-time quantitative polymerase chain reaction. After that, the effects of dysregulated microRNA-211 (miR-211) with overexpressing lncRNA MEG3 on JEG-3 cells and BeWo cells were testified. Western blot analysis was used to study the involvements of the signaling pathways in the lncRNA MEG3-associated modulation. We found that lncRNA MEG3 upregulation reduced cell viability, inhibited proliferation, migration and invasion, and promoted apoptosis. Expression of miR-211 was upregulated after lncRNA MEG3 overexpression. Effects of lncRNA MEG3 overexpression were augmented by miR-211 overexpression, while they were declined by miR-211 silencing. Phosphorylated levels of PI3K, AKT, and AMP-activated protein kinase (AMPK) were decreased by lncRNA MEG3 overexpression via regulation of miR-211. To sum up, lncRNA MEG3 could repress proliferation, migration and invasion, and promote apoptosis of JEG-3 and BeWo cells through upregulating miR-211. The PI3K/AKT and AMPK pathways were inhibited by lncRNA MEG3 overexpression via regulation of miR-211.  相似文献   

3.
The human trophoblast secretes endothelin-1 (ET-1) and expresses ET receptors. The present study tested whether the transformed BeWo, JAR and JEG-3 choriocarcinoma cells: (1) secrete endothelin-1 (ET-1); (2) express both ET-A and ET-B receptor subtypes; and (3) have the potential to allow for autologous regulation of ET-receptor proteins. The cells were cultured for 24/48 h with or without 10% FCS and, in experiments on receptor regulation, with ET-1 (5-20 nM and 10 microM). ET-1 secretion was measured by RIA and receptor levels by immunoblotting. All cell types secreted ET-1 albeit at different levels and sensitivity to FCS. All cell lines expressed both ET-A (JEG-3>BeWo=JAR) and ET-B (JEG-3=JAR>BeWo) receptor subtypes, which could be up- and downregulated depending on ET-1 concentration, culture time and FCS presence. It is concluded that BeWo, JAR and JEG-3 choriocarcinoma cells secrete ET-1 and express both ET-A and ET-B receptor subtypes. The receptor levels can be regulated by ET-1. This provides the molecular basis for an autocrine system with the potential of autologous regulation of yet unidentified ET-1-induced functions.  相似文献   

4.
5.
由HSD17B1基因编码的人Ⅰ型17β-羟类固醇脱氢酶(17β-hydroxysteroid dehydrogenasetype 1,简称Ⅰ型17HSD)催化雌酮与雌二醇之间的转化。本文研究环腺苷一磷酸简称(cAM-P)对该酶在培养的绒癌细胞系(JAR和JEG-3)中表达的调节作用。用8-bromo-cAMP处理两种绒癌细胞后,观察到在伴随1.3 kbⅠ型17 HSDmRNA表达的同时,Ⅰ型17 HSD蛋白浓度也显著上升。标记基因分析表明,cAMP可诱导HSD 17 B1基因启动子在JAR和JEG-3细胞系中的转录活性,参与调节这一诱导作用的区域位于HSD 17 B1基因编码区上游-659至-550处。凝胶阻滞实验显示这一区域可同JAR、JEG-3、T-47 D和HeLa细胞核抽提物形成特异的DNA-蛋白复合物。本结果首次证实cAMP激活HSD 17 B1基因启动子在绒癌细胞中的转录。  相似文献   

6.
Characterization of free radical-induced cell injury processes of placenta cells is of vital importance for clinical medicine for the maintenance of intrauterine fetal life. The present study has analyzed cell injury processes in cells of the choriocarcinoma cell line JAR treated with menadione, an anticancer drug, and H(2)O(2) in comparison to osteosarcoma 143B cells using electron microscopic and flow cytometric techniques. Flow cytometry on JAR cells exposed to 100 muM menadione and double-stained with Annexin V and propidium iodide (PI) detected apoptotic cells reaching the maximum after 4 h of incubation with a rapid decrease thereafter. Viable cells became decreased to 46% of the control after 2 h of incubation, reaching 5% after 4 h. Cells stainable with both Annexin V and PI began to increase distinctly after 2 h of incubation, reaching 55% after 4 h. Electron microscopy showed that cells stainable with both dyes specified above had condensed nuclei and swollen cytoplasm, suggesting that they were undergoing a switch of the cell death mode from apoptosis to necrosis. On the other hand, 90% of 143B cells remained intact after 4 h of menadione treatment although the intracellular levels of superoxide were always higher than those of JAR cells treated with the drug. In contrast, JAR cells were more resistant than 143B cells to H(2)O(2)-induced cytotoxicity. These results may suggest that cytotoxicity of menadione cannot be explained simply by oxygen free radicals generated from the drug. The resistance of JAR cells to oxygen free radical-induced cytotoxicity may be advantageous for intrauterine fetal life.  相似文献   

7.
8.
We had earlier shown that TGF-beta controls proliferation, migration, and invasiveness of normal human trophoblast cells, whereas premalignant and malignant trophoblast cells are resistant to TGF-beta. To identify signaling defects responsible for TGF-beta resistance in premalignant and malignant trophoblasts, we have compared the expression of TGF-beta signaling molecules in a normal trophoblast cell line (HTR-8), its premalignant derivative (RSVT2/C), and two choriocarcinoma cell lines (JAR and JEG-3). RT-PCR analysis revealed that all these cell lines expressed the mRNA of TGF-beta1, -beta2, and -beta3, TGF-beta receptors type I, II, and III, and post-receptor signaling genes smad2, smad3, smad4, smad6, and smad7 with the exception that TGF-beta2 and smad3 were undetectable in JAR and JEG-3 cells. Immunoblot analysis confirmed the absence of smad3 protein in choriocarcinoma cells. Treatment with TGF-beta1 induced smad3 phosphorylation and smad3 translocation to the nucleus in the normal and premalignant trophoblast cells. These results suggest that loss of smad3 may account for a functional disruption in the TGF-beta signaling pathway in choriocarcinomas, but not in the premalignant trophoblast.  相似文献   

9.
The current study was undertaken to investigate anticancer activity of coumestrol phytoestrogen against human skin cancer. MTT assay was performed for cell viability assessment and clonogenic assay for cell colony formation assessment. Apoptosis was analysed by Annexin V/FITC staining, AO/EB staining and western blotting assays. Effects on the m-TOR/PI3K/AKT signalling pathway were investigated by western blotting. Results indicated that coumestrol induced significant toxicity in human skin cancer cells in contrast to mouse skin cancer cells. The proliferation rate in normal skin cells remained almost intact. Annexin V-FITC and AO/EB staining assays indicated coumestrol induced cytotoxicity in skin cancer cells is mediated through apoptosis stimulation. The apoptosis in skin cancer cells was mediated through caspase-activation. Cell migration and invasion was inhibited by coumestrol in human skin cancer cells via inhibition of MMP-2 and MMP-9 expressions. Moreover, m-TOR/PI3K/AKT signalling pathway in SKEM-5 cells was blocked by coumestrol.  相似文献   

10.
Abamectin (ABA) as one of the worldwide used compounds in agriculture has raised safety concerns on nontarget organism toxicity. However, the study of male reproductive system damage caused by ABA remains unclear. Our aim is to investigate the effect of ABA‐induced cytotoxicity in TM3 Leydig cells and their underlying mechanisms. ABA inhibits TM3 cell viability and proliferation via cell cycle arrested in the G0/G1 phase. In addition, ABA‐induced mitochondrial depolarization leads to an imbalance in Bcl‐2 family expression, causing caspase‐dependent apoptosis in TM3 cells. The increased ratio of cells expression LC3 protein and LC3‐II to LC3‐I indicated the activation of autophagy potentially. Further experiments revealed ABA treatment reduced phosphatidylinositol 3‐kinase (PI3K), protein kinase B (AKT) phosphorylation, and mammalian target of rapamycin (mTOR) phosphorylation. Pretreatment with a PI3K/AKT inhibitor, LY294002, mimicked the ABA‐mediated effects on cytotoxicity. Pretreatment with a PI3K/AKT agonist, insulin‐like growth factor‐1, reversed the effects of ABA. ABA caused the accumulation of intracellular reactive oxygen species (ROS) by increased intensity of the ROS indicator. However, N‐acetylcysteine as ROS scavengers inhibited ABA‐induced apoptosis and autophagy and reversed these ABA‐mediated effects on PI3K/AKT/mTOR pathway. On the basis of the above results, it is suggested that ABA exposure induces apoptosis and autophagy in TM3 cells by ROS accumulation to mediate PI3K/AKT/mTOR signaling pathway suppression.  相似文献   

11.
12.
This study examined the role of osteopontin (OPN), a phosphorylated secreted glycoprotein, in the promotion of trophoblastic cell migration, an early event in the embryo implantation process. Three human choriocarcinoma cell lines, namely JAR, BeWo, and JEG-3, were treated with variants of OPN differing in the extent of phosphorylation following sequential dephosphorylation with tartrate-resistant acid phosphatase (TRAP), and their migratory response was measured. The highly phosphorylated human milk form of OPN (OPN-1) strongly triggered migration in all three cell lines, whereas the less phosphorylated variants, OPN-2a and OPN-2b, failed to stimulate migration. JAR cell migration in response to OPN-1 was accompanied by a rapid rearrangement of actin filaments to the cellular membrane. Using broad spectrum protein kinase profiling, we identified p70 S6 kinase as a major signal transduction pathway activated by OPN-1 during the migratory response in JAR cells. Activation was blocked completely by rapamycin and LY294002, thus demonstrating that OPN-1-stimulated migration occurs through mTOR and PI3K pathways, respectively. Conversely, PD98059 did not affect the activation of p70 S6 kinase by OPN-1, therefore, this response does not involve the Ras/ MAPK signaling cascade. Together, these data show that the highly phosphorylated human OPN-1 can stimulate trophoblastic cell migration and provides evidence for the involvement of the PI3K/mTOR/p70 S6 kinase pathway in the JAR cells response. Because both OPN and TRAP are expressed in the uterus during early pregnancy, it is conceivable that extracellular phosphatases such as TRAP may modify OPN charge state and thus modulate cell migration.  相似文献   

13.
Proliferation, migration, and invasiveness of the normal placental extravillous trophoblast (EVT) cells are negatively regulated by transforming growth factor-beta (TGF-beta), whereas malignant EVT (JAR and JEG-3 choriocarcinoma) cells are resistant to TGF-beta. These malignant cells were found to have lost the expression of Smad3. Present study examined whether Smad3 restitution in JAR cells could restore TGF-beta response. We produced a stable Smad3 cDNA-transfected clone (JAR-smad3/c) which exhibited further upregulation of Smad3 in the presence of TGF-beta1. Since anti-invasive effects of TGF-beta in the normal EVT cells were shown to be mediated in part by plasminogen activator inhibitor-1 (PAI-1) and urokinase-type plasminogen activator (uPA), we compared the expression of PAI-1 and uPA in the normal EVT, JAR, and JAR-smad3/c cells in the presence or absence of TGF-beta1. The basal levels of PAI-1 mRNA and secreted PAI-1 and uPA proteins were found to be very low in JAR and JAR-smad3/c cells, as compared to the normal EVT cells. However, TGF-beta1 upregulated PAI-1 and downregulated uPA in JAR-smad3/c cells, but not in JAR cells. Thus, resistance of choriocarcinoma cells to anti-invasive effects of TGF-beta may, at least in part, be due to loss of Smad3 expression.  相似文献   

14.
The kinesin protein Kif7 has been recognized as an integral component of hedgehog signalling. Aberrant activation of hedgehog signalling has been implicated in many human solid tumours. Gestational trophoblastic disease includes frankly malignant choriocarcinoma and potentially malignant hydatidiform mole. Here we investigated the hedgehog signalling components expression profiles in gestational trophoblastic disease. Downregulation of Gli1, Gli2, Gli3 and Kif7 was demonstrated in clinical samples of choriocarcinoma and hydatidiform moles as well as choriocarcinoma cell lines when compared with normal placentas. Ectopic expression of Kif7 in two choriocarcinoma cell lines JAR and JEG-3 led to a decrease in cell growth and increase in apoptosis demonstrated by MTT and TUNEL assays, respectively. Overexpression of Kif7 also led to suppressed cell migration through transwell assay. In contrast, knocking down Kif7 in HTR-8/SVneo, an immortalized trophoblast cell line, increased cell number over time and increased the migratory ability of the cells. Taken together, Kif7 may contribute to pathogenesis of gestational trophoblastic disease through enhancing survival and promoting dissemination of trophoblasts.  相似文献   

15.
Multidrug resistance (MDR) is a major obstacle to chemotherapy, which leads to ineffective chemotherapy, an important treatment strategy for gastric cancer (GC). The abnormality of microRNAs (miRNAs) is critical to the occurrence and progression of MDR in various tumors. In this study, hsa-miR-34a-5p was found to be decreased in multidrug resistant GC cells SGC-7901/5-Fluorouracil (SGC-7901/5-Fu) compared to the parental SGC-7901 cells. Overexpression of hsa-miR-34a-5p in SGC-7901/5-Fu cells promoted apoptosis and decreased migration and invasiveness after chemotherapy. In addition, overexpression of hsa-miR-34a-5p suppressed the growth of drug-resistant tumor in vivo. The mechanism of the effects of hsa-miR-34a-5p could include the regulation of the expression of Sirtuin 1 (SIRT1), P-glycoprotein (P-gp) or Multidrug resistance-related protein 1 (MRP1) through direct binding to the 3′-untranslated region (UTR) of SIRT1. Functional gain-and-loss experiments indicated that hsa-miR-34a-5p enhances the chemotherapy sensitivity of MDR GC cells by inhibiting SIRT1, P-gp and MRP1. In conclusion, hsa-miR-34a-5p can reverse the MDR of GC cells by inhibiting the expression of SIRT1, P-gp or MRP1.  相似文献   

16.

Background

The BCRP/ABCG2 transporter, which mediates drug resistance in many types of cells, depends on energy provided by ATP hydrolysis. Here, a retrovirus encoding a shRNA targeting the ATP-binding domain of this protein was used to screen for highly efficient agents that could reverse drug resistance and improve cell sensitivity to drugs, thus laying the foundation for further studies and applications.

Methodology/Principal Findings

To target the ATP-binding domain of BCRP/ABCG2, pLenti6/BCRPsi shRNA recombinant retroviruses, with 20 bp target sequences starting from the 270th, 745th and 939th bps of the 6th exon, were constructed and packaged. The pLenti6/BCRPsi retroviruses (V-BCRPi) that conferred significant knockdown effects were screened using a drug-sensitivity experiment and flow cytometry. The human choriocarcinoma cell line JAR, which highly expresses endogenous BCRP/ABCG2, was injected under the dorsal skin of a hairless mouse to initiate a JAR cytoma. After injecting V-BCRPi-infected JAR tumor cells into the dorsal skin of hairless mice, BCRP/ABCG2 expression in the tumor tissue was determined using immunohistochemistry, fluorescent quantitative RT-PCR and Western blot analyses. After intraperitoneal injection of BCRP/ABCG2-tolerant 5-FU, the tumor volume, weight change, and apoptosis rate of the tumor tissue were determined using in situ hybridization. V-BCRPi increased the sensitivity of the tumor histiocytes to 5-FU and improved the cell apoptosis-promoting effects of 5-FU in the tumor.

Conclusions/Significance

The goal of the in vivo and in vitro studies was to screen for an RNA interference recombinant retrovirus capable of stably targeting the ATP-binding domain of BCRP/ABCG2 (V-BCRPi) to inhibit its function. A new method to improve the chemo-sensitivity of breast cancer and other tumor cells was discovered, and this method could be used for gene therapy and functional studies of malignant tumors.  相似文献   

17.
The oral second-generation bis-aryl urea fms-like tyrosine kinase 3 (FLT3) inhibitor quizartinib (AC220) has favorable kinase selectivity and pharmacokinetics. It inhibits mutant and wild-type FLT3 in vivo at 0.1 and 0.5 µM, respectively, and has shown favorable activity and tolerability in phase I and II trials in acute myeloid leukemia, with QT prolongation as the dose-limiting toxicity. Co-administration with chemotherapy is planned. We characterized interactions of quizartinib with the ATP-binding cassette (ABC) proteins ABCB1 (P-glycoprotein) and ABCG2 (breast cancer resistance protein). Its effects on uptake of fluorescent substrates and apoptosis were measured by flow cytometry, binding to ABCB1 and ABCG2 drug-binding sites by effects on [125I]iodoarylazidoprazosin ([125I]-IAAP) photolabeling and ATPase activity, and cell viability by the WST-1 colorimetric assay. Quizartinib inhibited transport of fluorescent ABCG2 and ABCB1 substrates in ABCG2- and ABCB1-overexpressing cells in a concentration-dependent manner, from 0.1 to 5 µM and from 0.5 to 10 µM, respectively, and inhibited [125I]-IAAP photolabeling of ABCG2 and ABCB1 with IC50 values of 0.07 and 3.3 µM, respectively. Quizartinib at higher concentrations decreased ABCG2, but not ABCB1, ATPase activity. Co-incubation with quizartinib at 0.1 to 1 µM sensitized ABCG2-overexpressing K562/ABCG2 and 8226/MR20 cells to ABCG2 substrate chemotherapy drugs in a concentration-dependent manner in cell viability and apoptosis assays. Additionally, quizartinib increased cellular uptake of the ABCG2 substrate fluoroquinolone antibiotic ciprofloxacin, which also prolongs the QT interval, in a concentration-dependent manner, predicting altered ciprofloxacin pharmacokinetics and pharmacodynamics when co-administered with quizartinib. Thus quizartinib inhibits ABCG2 at pharmacologically relevant concentrations, with implications for both chemosensitization and adverse drug interactions. These interactions should be considered in the design of treatment regimens combining quizartinib and chemotherapy drugs and in choice of concomitant medications to be administered with quizartinib.  相似文献   

18.
目的:探讨磷脂酰肌醇-3-激酶/丝苏氨酸蛋白激酶(phosphatidylinositol 3 kinase/serine-threonine kinase,PI3K/AKT)信号通路与乳腺癌多药耐药和侵袭转移的相关性。方法:以乳腺癌细胞系MCF-7为母本,持续低浓度加药诱导建立阿霉素(Adriamycin,ADR)耐药系MCF-7/ADR’。细胞免疫荧光检测两细胞系中磷酸化AKT(phosphorylated AKT,P-AKT)、P-糖蛋白(P-Glycoprotein,P-gp)、基质金属蛋白酶2(matrix metalloproteinase-2,MMP-2)的表达。PI3K抑制剂LY294002作用两系前后,Western Blot检测P-AKT、MMP-2、P-gp的表达改变及qRT-PCR检测MMP-2、MDR1的表达改变。结果:P-AKT、P-gp(MDR1)、MMP-2在MCF-7中为低表达或不表达,MCF-7/ADR’中为高表达。LY294002作用两系后,P-AKT、P-gp(MDR1)、MMP-2在MCF-7/ADR’中的表达明显减低(P<0.05),MCF-7无明显改变。结论:抑制PI3K/AKT信号通路可有效降低MCF-7/ADR’耐药和侵袭转移能力,PI3K/AKT通路是调控乳腺癌多药耐药和侵袭转移的重要信号通路之一。  相似文献   

19.

Drug resistance largely limits the efficacy and efficiency of chemotherapeutics, which is a first-line treatment for liver cancer, consequently triggering a complete failure in clinical application. There are numerous attempts in exploring potential strategies for avoiding drug resistance, but none of them has effectively addressed this problem. Therefore, novel molecular targets and agents proposed for addressing drug resistance are needed. This study established 5-fluorouracil (5-Fu)-resistant HepG2 cells (HepG2/R) and showed that a FOXM1-targeted peptide, P201, reactivated 5-Fu to attenuate HepG2/R cell viability, proliferation, migration and promote apoptosis. Moreover, both pharmacological studies and RNA genomic sequencing results uncovered that combination of P201 and 5-Fu notably decreased expressions of FOXM1, MDR1 and ABCG2 compared to 5-Fu alone, indicating P201 overcame 5-Fu resistance mainly through inhibiting FOXM1 and ABC transporters. Therefore, P201 could inhibit ABC transporters by targeting FOXM1 in HepG-2/R cells, overcoming 5-Fu resistance and enhancing anti-cancer drug sensitivity. FOXM1 may be a new target for overcoming 5-Fu resistance in HepG2 cell while the combination treatment of P201 and 5-Fu may serve as a potential strategy for treating liver cancer.

  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号