首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Inflammation is one of the major causes of intervertebral disc degeneration (IDD). Emerging evidence has revealed that increase in the levels of pro-inflammatory cytokines, such as interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α), can activate a variety of signaling pathways, eventually resulting in IDD. Here, we show that the two cullin family genes, CUL4A and CUL4B, but not other cullins, are specifically overexpressed in IDD samples compared with healthy controls, and the CUL4A and CUL4B levels are positively correlated with the severity of IDD. In vitro analyses in human osteoblast cells (hFOB1.19), nucleus pulposus cells (hNPCs), and annulus fibrosus cells (hAFCs) indicated that treatment with IL-6 and TNF-α can increase CUL4A and CUL4B levels. By performing a microRNA-based microarray analysis, we found a set of microRNAs (miRNAs) that were differentially expressed in IDD samples compared with samples from healthy controls. Of these miRNAs, miR-194-5p, was significantly downregulated in IDD samples and could bind to the three prime untranslated regions (3′-UTRs) of both CUL4A and CUL4B, thereby downregulating their expression. The in vitro overexpression or downregulation of miR-194-5p, with a miR-194-5p-mimic or with anti-miR-194-5p, can cause the repression or induction of both CUL4A and CUL4B, respectively. Interestingly, treatment with IL-6 and TNF-α inhibitors in primary hNPCs and hAFCs that were isolated from patients with IDD led to the downregulation of CUL4A and CUL4B. Together, these findings provide insight into how the inflammation-dependent downregulation of miR-194-5p contributes to the pathogenesis of IDD, which may aid in the development of new therapeutic approaches for IDD by directly targeting miR-194-5p or CUL4A and CUL4B.  相似文献   

3.
Epigenetic dysregulation plays an important role in cancer. Histone demethylation is a well‐known mechanism of epigenetic regulation that promotes or inhibits tumourigenesis in various malignant tumours. However, the pathogenic role of histone demethylation modifiers in papillary thyroid cancer (PTC), which has a high incidence of early lymphatic metastasis, is largely unknown. Here, we detected the expression of common histone demethylation modifiers and found that the histone H3 lysine 4 (H3K4) and H3 lysine 9 (H3K9) demethylase KDM1A (or lysine demethylase 1A) is frequently overexpressed in PTC tissues and cell lines. High KDM1A expression correlated positively with age <55 years and lymph node metastasis in patients with PTC. Moreover, KDM1A was required for PTC cell migration and invasion. KDM1A knockdown inhibited the migration and invasive abilities of PTC cells both in vitro and in vivo. We also identified tissue inhibitor of metalloproteinase 1 (TIMP1) as a key KDM1A target gene. KDM1A activated matrix metalloproteinase 9 (MMP9) through epigenetic repression of TIMP1 expression by demethylating H3K4me2 at the TIMP1 promoter region. Rescue experiments clarified these findings. Altogether, we have uncovered a new mechanism of KDM1A repression of TIMP1 in PTC and suggest that KDM1A may be a promising therapeutic target in PTC.  相似文献   

4.
5.
6.
7.
BackgroundAltered epigenetic reprogramming and events contribute to breast cancer (Bca) progression and metastasis. How the epigenetic histone demethylases modulate breast cancer progression remains poorly defined. We aimed to elucidate the biological roles of KDM4A in driving Notch1 activation and Bca progression.MethodsThe KDM4A expression in Bca specimens was analyzed using quantitative PCR and immunohistochemical assays. The biological roles of KDM4A were evaluated using wound-healing assays and an in vivo metastasis model. The Chromatin Immunoprecipitation (ChIP)-qPCR assay was used to determine the role of KDM4A in Notch1 regulation.ResultsHere, we screened that targeting KDM4A could induce notable cell growth suppression. KDM4A is required for the growth and progression of Bca cells. High KDM4A enhances tumor migration abilities and in vivo lung metastasis. Bioinformatic analysis suggested that KDM4A was highly expressed in tumors and high KDM4A correlates with poor survival outcomes. KDM4A activates Notch1 expressions via directly binding to the promoters and demethylating H3K9me3 modifications. KDM4A inhibition reduces expressions of a list of Notch1 downstream targets, and ectopic expressions of ICN1 could restore the corresponding levels. KDM4A relies on Notch1 signaling to maintain cell growth, migration and self-renewal capacities. Lastly, we divided a panel of cell lines into KDM4Ahigh and KDM4Alow groups. Targeting Notch1 using specific LY3039478 could efficiently suppress cell growth and colony formation abilities of KDM4Ahigh Bca.ConclusionTaken together, KDM4A could drive Bca progression via triggering the activation of Notch1 pathway by decreasing H3K9me3 levels, highlighting a promising therapeutic target for Bca.  相似文献   

8.
Emerging evidence has demonstrated that the aberrant expression of histone-modifying enzymes such as histone demethylases contributes to gastric carcinogenesis and progression. The role of KDM4B in cancer progression has been gradually revealed. However, the underlying mechanisms regulating gastric cancer metastasis of KDM4B remain unclear. In the present study we determined KDM4B expression in gastric cancer and its biologic function in vitro and in vivo. We found that KDM4B expression was significantly increased in most gastric cancer tissues compared with the adjacent normal tissues. Upregulated expression of KDM4B in human gastric cancer was correlated with poor prognosis. In vitro, KDM4B overexpression in AGS cells promoted cell invasion, whereas knockdown of KDM4B inhibited cell invasion. Furthermore, KDM4B overexpression also promoted tumor metastasis in vivo. Mechanistically, KDM4B upregulated miR-125b expression and activated Wnt signaling pathway. More important, miR-125b partially mediated KDM4B-induced activation of Wnt signaling. Finally, we demonstrated that KDM4B promoted gastric cancer cell invasion in vitro and cancer metastasis in vivo, at least in part, by upregulating miR-125b expression. These data provided novel insights on the role of KDM4B-driven gastric cancer metastasis and indicated that KDM4B may be served as a potential target for gastric cancer.  相似文献   

9.
In this study, we aimed to explore the association between miR-99a-5p and CDC25A in breast cancer and the regulatory mechanisms of miR-99a-5p on breast cancer. The expressions of messenger RNA and microRNAs in breast cancer tissues and adjacent tissues were analyzed by the Cancer Genome Atlas microarray analysis. Quantitative real-time polymerase chain reaction was conducted to find out the expression levels of miR-99a-5p and CDC25A. The expression levels of proteins (CDC25A, ki67, cyclin D1, p21, BAX, BCL-2, BCL-XL, MMP2, and MMP9) were determined by Western blot analysis. The relationship between miR-99a-5p and CDC25A was predicted and verified by bioinformatics analysis and dual luciferase assay. After transfection, cell proliferation, invasion, and apoptosis of breast cancer tissues were, respectively, observed by cell counting kit-8 assay, transwell assay, and flow cytometry (FCM). Furthermore, the relationship among miR-99a-5p, CDC25A, and cell-cycle progression was determined by FCM assay. The nude mouse transplantation tumor experiment was performed to verify the influence of miR-99a-5p on breast cancer cell in vivo. The expression of miR-99a-5p in breast cancer tissues and cells was significantly downregulated, whereas CDC25A expression was upregulated. MiR-99a-5p targeted CDC25A and suppressed its expression in breast cancer cells. Overexpression of miR-99a-5p and decreased expression of CDC25A could suppress breast cancer cell proliferation and invasion and facilitate apoptosis. Cell-cycle progression was significantly activated by downregulated miR-99a-5p and upregulated CDC25A. Moreover, miR-99a-5p overexpression repressed the expressions of CDC25A, marker ki67, and Cyclin D1 proteins, whereas it upregulated the expression of p21 protein. MicroRNA-99a-5p suppresses breast cancer progression and cell-cycle pathway through downregulating CDC25A.  相似文献   

10.
Cervical cancer (CC) is a highly fatal gynecological malignancy due to its high metastasis and recurrence rate. Circular RNA (circRNA) has been regarded as a regulator of CC. However, the underlying molecular mechanism of circ_0005615 in CC remains unclear. The levels of circ_0005615, miR-138-5p, and lysine demethylase 2A (KDM2A) were measured using qRT-PCR or western blot. Cell proliferation was assessed by Cell Counting Kit-8, 5-ethynyl-2′-deoxyuridine, and colony formation experiments. Cell invasion and migration were tested by transwell assay and wound healing assay. Flow cytometry and Caspase-Glo 3/7 Assay kit were used to analyze cell apoptosis. The expression of proliferation-related and apoptosis-related markers was detected by western blot. The binding relationships among circ_0005615, miR-138-5p, and KDM2A were verified by dual-luciferase reporter assay or RNA immunoprecipitation assay. Xenograft assay was applied to detect the effect of circ_0005615 in vivo. Circ_0005615 and KDM2A were upregulated, while miR-138-5p was downregulated in CC tissues and cells. Circ_0005615 knockdown retarded cell proliferation, migration, and invasion, while promoting apoptosis. Besides, circ_0005615 sponged miR-138-5p, and miR-138-5p could target KDM2A. miR-138-5p inhibitor reversed the regulation of circ_0005615 knockdown on CC cell growth and metastasis, and KDM2A overexpression also abolished the inhibitory effect of miR-138-5p on CC cell growth and metastasis. In addition, we also discovered that circ_0005615 silencing inhibited CC tumor growth in vivo. Circ_0005615 acted as a tumor promoter in CC by regulating the miR-138-5p/KDM2A pathway.  相似文献   

11.
12.
13.
Our previous works revealed that human ribosomal protein S13 (RPS13) was up‐regulated in multidrug‐resistant gastric cancer cells and overexpression of RPS13 could protect gastric cancer cells from drug‐induced apoptosis. The present study was designed to explore the role of RPS13 in tumorigenesis and development of gastric cancer. The expression of RPS13 in gastric cancer tissues and normal gastric mucosa was evaluated by immunohistochemical staining and Western blot analysis. It was found RPS13 was expressed at a higher level in gastric cancer tissues than that in normal gastric mucosa. RPS13 was then genetically overexpressed in gastric cancer cells or knocked down by RNA interference. It was demonstrated that up‐regulation of RPS13 accelerated the growth, enhanced in vitro colony forming and soft agar cologenic ability and promoted in vivo tumour formation potential of gastric cancer cells. Meanwhile, down‐regulation of RPS13 in gastric cancer cells resulted in complete opposite effects. Moreover, overexpression of RPS13 could promote G1 to S phase transition whereas knocking down of RPS13 led to G1 arrest of gastric cancer cells. It was further demonstrated that RPS13 down‐regulated p27kip1 expression and CDK2 kinase activity but did not change the expression of cyclin D, cyclin E, CDK2, CDK4 and p16INK4A. Taken together, these data indicate that RPS13 could promote the growth and cell cycle progression of gastric cancer cells at least through inhibiting p27kip1 expression.  相似文献   

14.
15.
The tumor protein (TP) p63/microRNAs functional network may play a key role in supporting the response of squamous cell carcinomas (SCC) to chemotherapy. We show that the cisplatin exposure of SCC-11 cells led to upregulation of miR-297, miR-92b-3p, and miR-485-5p through a phosphorylated ΔNp63α-dependent mechanism that subsequently modulated the expression of the protein targets implicated in DNA methylation (DNMT3A), histone deacetylation (HDAC9), and demethylation (KDM4C). Further studies showed that mimics for miR-297, miR-92b-3p, or miR-485-5p, along with siRNA against and inhibitors of DNMT3A, HDAC9, and KDM4C modulated the expression of DAPK1, SMARCA2, and MDM2 genes assessed by the quantitative PCR, promoter luciferase reporter, and chromatin immunoprecipitation assays. Finally, the above-mentioned treatments affecting epigenetic enzymes also modulated the response of SCC cells to chemotherapeutic drugs, rendering the resistant SCC cells more sensitive to cisplatin exposure, thereby providing the groundwork for novel chemotherapeutic venues in treating patients with SCC.  相似文献   

16.
Recent sequencing studies of clear cell (conventional) renal cell carcinoma (ccRCC) have identified inactivating point mutations in the chromatin-modifying genes PBRM1, KDM6A/UTX, KDM5C/JARID1C, SETD2, MLL2 and BAP1. To investigate whether aberrant hypermethylation is a mechanism of inactivation of these tumor suppressor genes in ccRCC, we sequenced the promoter region within a bona fide CpG island of PBRM1, KDM6A, SETD2 and BAP1 in bisulfite-modified DNA of a representative series of 50 primary ccRCC, 4 normal renal parenchyma specimens and 5 RCC cell lines. We also interrogated the promoter methylation status of KDM5C and ARID1A in the Cancer Genome Atlas (TCGA) ccRCC Infinium data set. PBRM1, KDM6A, SETD2 and BAP1 were unmethylated in all tumor and normal specimens. KDM5C and ARID1A were unmethylated in the TCGA 219 ccRCC and 119 adjacent normal specimens. Aberrant promoter hypermethylation of PBRM1, BAP1 and the other chromatin-modifying genes examined here is therefore absent or rare in ccRCC.  相似文献   

17.
18.
Gastric cancer remains the second leading cause of cancer-related death in the world. H. pylori infection, a major risk factor for gastric cancer, generates high levels of reactive oxygen species (ROS). Glutathione peroxidase 3 (GPX3), a plasma GPX member and a major scavenger of ROS, catalyzes the reduction of hydrogen peroxide and lipid peroxides by reduced glutathione. To study the expression and gene regulation of GPX3, we examined GPX3 gene expression in 9 gastric cancer cell lines, 108 primary gastric cancer samples and 45 normal gastric mucosa adjacent to cancers using quantitative real-time RT-PCR. Downregulation or silencing of GPX3 was detected in 8 of 9 cancer cell lines, 83% (90/108) gastric cancers samples, as compared to non-tumor adjacent normal gastric samples (P<0.0001). Examination of GPX3 promoter demonstrated DNA hypermethylation (≥10% methylation level determined by Bisulfite Pyrosequencing) in 6 of 9 cancer cell lines and 60% of gastric cancer samples (P = 0.007). We also detected a significant loss of DNA copy number of GPX3 in gastric cancers (P<0.001). Treatment of SNU1 and MKN28 cells with 5-Aza-2′ Deoxycytidine restored the GPX3 gene expression with a significant demethylation of GPX3 promoter. The downregulation of GPX3 expression and GPX3 promoter hypermethylation were significantly associated with gastric cancer lymph node metastasis (P = 0.018 and P = 0.029, respectively). We also observed downregulation, DNA copy number losses, and promoter hypermethylation of GPX3 in approximately one-third of tumor-adjacent normal gastric tissue samples, suggesting the presence of a field defect in areas near tumor samples. Reconstitution of GPX3 in AGS cells reduced the capacity of cell migration, as measured by scratch wound healing assay. Taken together, the dysfunction of GPX3 in gastric cancer is mediated by genetic and epigenetic alterations, suggesting impairment of mechanisms that regulate ROS and its possible involvement in gastric tumorigenesis and metastasis.  相似文献   

19.
IRX1 is originally characterized as a tumor suppressor gene of gastric cancer (GC) by our group based on serially original studies. However, the molecular regulatory mechanisms of IRX1 are not clear yet. Here, we identified protein arginine methyltransferase 5 (PRMT5) as a major upstream regulator of IRX1 for determining GC progression. Expression of PRMT5 was significantly increased in human GC tissues (433 out of 602 cases, 71.93%) compared with normal gastric mucosa, and exhibited diagnostic and prognostic potential. Overexpression of PRMT5 promoted tumorigenicity and metastasis of GC cells, while knockdown of PRMT5 abrogated tumorigenicity and metastasis of GC cells in vitro and in vivo. By co-immunoprecipitation and chromatin immunoprecipitation assays, we proved that PRMT5 elevated methylation levels of tumor suppressor IRX1 promoter via recruiting DNMT3A at promoter region. Knockdown of PRMT5 in SGC7901 and NCI-N87 cells decreased the recruitment of DNMT3A at IRX1 promoter, and reduced the methylation level of IRX1 promoter, then re-activated IRX1 expression. Whereas, overexpression of PRMT5 could epigenetically suppress IRX1 expression. Overall, PRMT5 promoted tumorigenicity and metastasis of gastric cancer cells via epigenetic silencing of IRX1. Targeting PRMT5 in GC might inhibit the malignant characters of GC and drawing a novel therapeutic potential.  相似文献   

20.
miRNAs have emerged as crucial regulators in the regulation of development as well as human diseases, especially tumorigenesis. The aims of this study are to evaluate miR-30b-5p expression pattern and mechanism in gastric carcinogenesis due to which remains to be determined. Expression of miR-30b-5p was analyzed in 51 gastric cancer cases and 4 cell lines by qRT-PCR. The effect of DNA methylation on miR-30b-5p expression was assessed by MSP and BGS. In order to know whether DNMT1 increased miR-30b-5p promoter methylation, DNMT1 was depleted in cell lines AGS and BGC-823. The role of miR-30b-5p on cell migration was evaluated by wound healing assays. Decreased expression of miR-30b-5p was found in gastric cancer samples. In tumor, the expression level of miR-30b-5p was profound correlated with lymph node metastasis (P = 0.019). The level of miR-30b-5p may be restored by DNA demethylation and DNMT1 induced miR-30b-5p promoter methylation. In vitro functional assays implied that enforced miR-30b-5p expression affected cell migration, consistent with tissues analysis. Our findings uncovered that miR-30b-5p is significantly diminished in gastric cancer tissues, providing the first insight into the epigenetic mechanism of miR-30b-5p down-regulation, induced by DNMT1, and the role of miR-30b-5p in gastric cancer carcinogenesis. Overexpression of miR-30b-5p inhibited cell migration. Thus, miR-30b-5p may represent a potential therapeutic target for gastric cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号