首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
The analgesic properties of photobiomodulation therapy (PBMT) have been raising increasing interest in the clinical community due to the positive effects observed on patients, nevertheless the mechanistic basis of its action on peripheral sensory neurons remains still elusive. In this study, the effect of near-infrared (NIR) PBMT at 800 and 970 nm of wavelength was investigated on the 50B11 immortalized nociceptive sensory neuronal cell line by evaluating capsaicin-induced calcium flow and different markers correlated to mitochondria, that is, ATP, reactive oxygen species (ROS), and mitochondrial membrane potential (MMP). Calcium peak stimulated by capsaicin, the ligand of TRPV1 channel, was decreased in neurons pre-irradiated with the combination of the two wavelengths. Furthermore, delivering the 800 and 970 nm separately an increment of ATP, as well as MMP hyperpolarization were detected; notably, the 800 nm wavelength also increased ROS and O2 levels. Our findings, obtained on an in vitro model of nociception, show the positive effect of PBMT on two potential photo-targets of NIR light, namely the TRPV1 channel and the mitochondria.  相似文献   

2.
3.
In our experiments on rat dorsal root ganglia (DRG) neurons, we studied the effects of an antiepileptic agent, gabapentin, on calcium transients evoked by depolarization of the membrane using the fluorescence calciumsensitive dye Fura-2/AM. Application of gabapentin to neurons with large-diameter somata practically did not change the characteristics of calcium transients. In mid-sized neurons, the amplitude of transients decreased, on average, by 27% with respect to the control, while in small-sized neurons the transients changed insignificantly (on average, less than by 7%). The mid-sized neurons were additionally subjected to the capsaicin test, which allowed us to differentiate primary nociceptive neurons of this group where TRPV1-type channels are expressed. In capsaicin-sensitive neurons, application of gabapentin led to a decrease in the amplitude of calcium transients, on average, by 37%, while such a decrease was only 16% in capsaicininsensitive neurons. Based on our own data and findings of other researchers on the ability of gabapentin to demonstrate affine binding with the accessory α2δ subunit of voltage-dependent calcium channels and also on the peculiarities of expression of these channels in somatosensory neurons of the corresponding types, we discuss the probable pattern of expression of subunits of the α2δ-1 subtype in DRG cells of different sizes. We demonstrated that the effects of gabapentin on calcium transients in nociceptive and hypothetically nonnociceptive mid-sized DRG neurons are selective (the effects in neurons involved in the sensation of acute pain are probably more intense). Neirofiziologiya/Neurophysiology, Vol. 40, No. 4, pp. 281–287, July–August, 2008.  相似文献   

4.
We studied how mitochondrial Ca2+ transport influences [Ca2+](i) dynamics in sympathetic neurons. Cells were treated with thapsigargin to inhibit Ca2+ accumulation by SERCA pumps and depolarized to elevate [Ca2+(i); the recovery that followed repolarization was then examined. The total Ca2+ flux responsible for the [Ca2+](i) recovery was separated into mitochondrial and nonmitochondrial components based on sensitivity to the proton ionophore FCCP, a selective inhibitor of mitochondrial Ca2+ transport in these cells. The nonmitochondrial flux, representing net Ca2+ extrusion across the plasma membrane, has a simple dependence on [Ca2+](i), while the net mitochondrial flux (J(mito)) is biphasic, indicative of Ca+) accumulation during the initial phase of recovery when [Ca2+](i) is high, and net Ca2+ release during later phases of recovery. During each phase, mitochondrial Ca2+ transport has distinct effects on recovery kinetics. J(mito) was separated into components representing mitochondrial Ca2+ uptake and release based on sensitivity to the specific mitochondrial Na(+)/Ca2+ exchange inhibitor, CGP 37157 (CGP). The CGP-resistant (uptake) component of J(mito) increases steeply with [Ca2+](i), as expected for transport by the mitochondrial uniporter. The CGP-sensitive (release) component is inhibited by lowering the intracellular Na(+) concentration and depends on both intra- and extramitochondrial Ca2+ concentration, as expected for the Na(+)/Ca2+ exchanger. Above approximately 400 nM [Ca2+](i), net mitochondrial Ca2+ transport is dominated by uptake and is largely insensitive to CGP. When [Ca2+](i) is approximately 200-300 nM, the net mitochondrial flux is small but represents the sum of much larger uptake and release fluxes that largely cancel. Thus, mitochondrial Ca2+ transport occurs in situ at much lower concentrations than previously thought, and may provide a mechanism for quantitative control of ATP production after brief or low frequency stimuli that raise [Ca(2+)](i) to levels below approximately 500 nM.  相似文献   

5.
    
The ability of sensory neurons to detect potentially harmful stimuli relies on specialized molecular signal detectors such as transient receptor potential (TRP) A1 ion channels. TRPA1 is critically implicated in vertebrate nociception and different pain states. Furthermore, TRPA1 channels are subject to extensive modulation and regulation - processes which consequently affect nociceptive signaling. Here we show that the neuropeptide Nocistatin sensitizes TRPA1-dependent calcium influx upon application of the TRPA1 agonist mustard oil (MO) in cultured sensory neurons of dorsal root ganglia (DRG). Interestingly, TRPV1-mediated cellular calcium responses are unaffected by Nocistatin. Furthermore, Nocistatin-induced TRPA1-sensitization is likely independent of the Nocistatin binding partner 4-Nitrophenylphosphatase domain and non-neuronal SNAP25-like protein homolog 1 (NIPSNAP1) as assessed by siRNA-mediated knockdown in DRG cultures. In conclusion, we uncovered the sensitization of TRPA1 by Nocistatin, which may represent a novel mechanism how Nocistatin can modulate pain.  相似文献   

6.
    
Glutamate receptors have been identified on the peripheral terminals of both primary sensory afferents and sympathetic post-ganglionic neurons, and activation of these receptors produces peripheral sensitization and enhances nociception. Adenosine is an endogenous agent that has a regulatory effect on pain. In brain and spinal cord, adenosine release can be promoted by excitatory amino acids. In the present study, we used in vivo microdialysis to determine whether glutamate also can release adenosine in peripheral tissues. Rats were anesthetized with pentobarbital and microdialysis probes were implanted into the subcutaneous tissue of the plantar aspect of the rat hind paw. Subcutaneous injection of glutamate (50 microL, 0.3-100 micromol) evoked a short-lasting adenosine release immediately following drug injection. Co-administration of either the N-methyl-D-aspartate (NMDA) receptor antagonist, dizocipine maleate (MK-801, 1 nmol) or the non-NMDA receptor antagonist, 6-cyano-7-nitroquinoxaline (CNQX, 10 nmol) with glutamate blocked such release, suggesting an involvement of peripheral ionotropic glutamate receptors in this response. Systemic pre-treatment with capsaicin, a neurotoxin selective for unmyelinated sensory afferents, significantly reduced glutamate-evoked peripheral adenosine release, but release was not affected by systemic pre-treatment with 6-hydroxydopamine, a neurotoxin selective for sympathetic nerve efferents. Neither MK-801 nor CNQX blocked 5% formalin-evoked adenosine release, suggesting adenosine release by formalin is not secondary to ionotropic glutamate receptor activation. We conclude that administration of glutamate evokes peripheral adenosine release, and that peripheral ionotropic glutamate receptors on unmyelinated sensory afferents are involved in such release. The released adenosine may provide a negative feedback control on nociception.  相似文献   

7.
    
Manipulating neural activity is crucial for studying the neural connectivity and the pathophysiology of neurodegenerative disease. Among various techniques for neural activation, direct optical stimulation method with femtosecond‐pulsed laser is simple and can be specifically applied on a single neuron. Brief irradiation of femtosecond laser pulses on a neuron elevates intracellular calcium, and it propagates to adjacent neurons. However, the mechanisms of laser‐induced neural activation are still unclear. In this report, we have elucidated the mechanism of laser‐induced neural activation which could be mediated by superoxide, specifically blocked by diphenyleneiodonium chloride, and depletion in intracellular calcium storage. Furthermore, we also showed that the propagation of calcium initiated by laser stimulation is dependent on the presence of extracellular calcium as well as electrical and chemical synapses. We verified the applicability of such mechanism for the assessment of neuronal functionality, by measuring calcium elevation, intracellular calcium propagation, ROS increase, and performing cell death assay in vehicle and Aβ‐treated neurons. This work suggests promising applications of the potential for implementing such laser‐induced neural activation for rapid and reliable drug screening.

  相似文献   


8.
    
The mechanosensory neurons of Drosophila larvae are demonstrably activated by diverse mechanical stimuli, but the mechanisms underlying this function are not completely understood. Here we report a genetic, immunohistochemical, and electrophysiological analysis of the Ppk30 ion channel, a member of the Drosophila pickpocket (ppk) family, counterpart of the mammalian Degenerin/Epithelial Na+ Channel family. Ppk30 mutant larvae displayed deficits in proprioceptive movement and mechanical nociception, which are detected by class IV sensory (mdIV) neurons. The same neurons also detect heat nociception, which was not impaired in ppk30 mutant larvae. Similarly, Ppk30 mutation did not alter gentle touch mechanosensation, a distinct mechanosensation detected by other neurons, suggesting that Ppk30 has a functional role in mechanosensation in mdIV neurons. Consistently, Ppk30 was expressed in class IV neurons, but was not detectable in other larval skin sensory neurons. Mutant phenotypes were rescued by expressing Ppk30 in mdIV neurons. Electrophysiological analysis of heterologous cells expressing Ppk30 did not detect mechanosensitive channel activities, but did detect acid‐induced currents. These data show that Ppk30 has a role in mechanosensation, but not in thermosensation, in class IV neurons, and possibly has other functions related to acid response.  相似文献   

9.
    
Tagged G‐protein‐coupled receptors (GPCRs) have been used to facilitate intracellular visualization of these receptors. We have used a combination of adenoviral vector gene transfer and tagged olfactory receptors to help visualize mammalian olfactory receptor proteins in the normal olfactory epithelium of rats, and in cell culture. Three recombinant adenoviral vectors were generated carrying variously tagged versions of rat olfactory receptor I7. The constructs include an N‐terminal Flag epitope tag (Flag:I7), enhanced green fluorescent protein (EGFP) fusion protein (EGFP:I7), and a C‐terminal EGFP fusion (I7:EGFP). These receptor constructs were assayed in rat olfactory sensory neurons (OSNs) and in a heterologous system (HEK 293 cell line) for protein localization and functional expression. Functional expression of the tagged receptor proteins was tested by electroolfactogram (EOG) recordings in the infected rat olfactory epithelium, and by calcium imaging in single cells. Our results demonstrate that the I7:EGFP fusion protein and Flag:I7 are functionally expressed in OSNs while the EGFP:I7 fusion is not, probably due to inappropriate processing of the protein in the cells. These data suggest that a small epitope tag (Flag) at the N‐terminus, or EGFP located at the C‐terminus of the receptor, does not affect ligand binding or downstream signaling. In addition, both functional fusion proteins (Flag:I7 and I7:EGFP) are properly targeted to the plasma membrane of HEK 293 cells. © 2002 Wiley Periodicals, Inc. J Neurobiol 50: 56–68, 2002  相似文献   

10.
    
The axon/dendrite specification collapsin response mediator protein 2 (CRMP2) bidirectionally modulates N-type voltage-gated Ca2+ channels (CaV2.2). Here we demonstrate that small ubiquitin-like modifier (SUMO) protein modifies CRMP2 via the SUMO E2-conjugating enzyme Ubc9 in vivo. Removal of a SUMO conjugation site KMD in CRMP2 (K374A/M375A/D376A; CRMP2AAA) resulted in loss of SUMOylated CRMP2 without compromising neurite branching, a canonical hallmark of CRMP2 function. Increasing SUMOylation levels correlated inversely with calcium influx in sensory neurons. CRMP2 deSUMOylation by SUMO proteases SENP1 and SENP2 normalized calcium influx to those in the CRMP2AAA mutant. Thus, our results identify a novel role for SUMO modification in CRMP2/CaV2.2 signaling pathway.  相似文献   

11.
    
  相似文献   

12.
    
In non‐excitatory cells, stromal interaction molecule 1 (STIM1) and STIM2 mediate store‐operated calcium entry via an interaction with ORAI1 calcium channels. However, in neurons, STIM2 over‐expression appears to play a role in calcium homeostasis that is different from STIM1 over‐expression. The aim of this study was to establish the role and localization of native STIM2 in the neuronal cell. Co‐immunoprecipitation experiments revealed that the interaction between endogenous STIM2 and ORAI1 was greater in a low‐calcium medium than in a high‐calcium medium. Using a Proximity Ligation Assay (PLA), the number of apparent complexes of endogenous STIM2 with ORAI1 was quantified. No change in the number of PLA signals was observed in the presence of thapsigargin, which depletes calcium from the endoplasmic reticulum (ER). However, the number of apparent STIM2‐ORAI1 complexes increased when intracellular and subsequently ER calcium concentrations were decreased by BAPTA‐AM or a low‐calcium medium. Both Fura‐2 acetoxymethyl ester calcium imaging and PLA in the same neuronal cell indicated that the calcium responses correlated strongly with the number of endogenous STIM2‐ORAI1 complexes. The small drop in calcium levels in the ER caused by decreased intracellular calcium levels appeared to initiate the calcium‐sensitive and thapsigargin‐insensitive interaction between STIM2 and ORAI1.

  相似文献   


13.
Rohon-Beard mechanosensory neurons (RBs), neural crest cells, and neurogenic placodes arise at the border of the neural- and non-neural ectoderm during anamniote vertebrate development. Neural crest cells require BMP expressing non-neural ectoderm for their induction. To determine if epidermal ectoderm-derived BMP signaling is also involved in the induction of RB sensory neurons, the medial region of the neural plate from donor Xenopus laevis embryos was transplanted into the non-neural ventral ectoderm of host embryos at the same developmental stage. The neural plate border and RBs were induced at the transplant sites, as shown by expression of Xblimp1, and XHox11L2 and XN-tubulin, respectively. Transplantation studies between pigmented donors and albino hosts showed that neurons are induced both in donor neural and host epidermal tissue. Because an intermediate level of BMP4 signaling is required to induce neural plate border fates, we directly tested BMP4′s ability to induce RBs; beads soaked in either 1 or 10 ng/ml were able to induce RBs in cultured neural plate tissue. Conversely, RBs fail to form when neural plate tissue from embryos with decreased BMP activity, either from injection of noggin or a dominant negative BMP receptor, was transplanted into the non-neural ectoderm of un-manipulated hosts. We conclude that contact between neural and non-neural ectoderm is capable of inducing RBs, that BMP4 can induce RB markers, and that BMP activity is required for induction of ectopic RB sensory neurons.  相似文献   

14.
We studied store-dependent (activated by depletion of the endoplasmic reticulum, ER, store) entry of Ca2+ from the extracellular medium into neurons of the rat spinal ganglia (small- and medium-sized cells; diameter, 18 to 36 μm). Activation of ryanodine-sensitive receptors of the ER in the studied neurons superfused by Tyrode solutions containing Ca2+ or with no Ca2+ was provided by application of 10 mM caffeine. The decay phase of caffeine-induced calcium transients in a Ca2+-containing solution was significantly longer than that in a Ca2+-free solution. This fact allows us to suppose that such a phenomenon is determined by Ca2+ entry into the neuron from the extracellular medium activated by caffeine-induced depletion of the ER store. Substitution of Ca2+-free extracellular solution by Ca2+-containing Tyrode solution, after depletion of the ER stores induced by applications of 100 nM ryanodine, 200 μM ATP, or 1 μM thapsigargin, resulted in increases in the concentration of intracellular Ca2+. These observations allow us to postulate that store-dependent Ca2+ entry into the studied neurons is activated after depletion not only of the inositol trisphosphate-sensitive ER store but also of the ryanodine-sensitive store. This entry also occurs after blocking of ATPases of the ER by thapsigargin. The kinetic characteristics of the rising phase of store-dependent Ca2+ entry induced by depletion of the ER stores under the influence of various agents are dissimilar; this can be related to different mechanisms of activation of such signals and/or to a compartmental organization of the ER. Neirofiziologiya/Neurophysiology, Vol. 37, No. 3, pp. 277–283, May–June, 2005.  相似文献   

15.
The role of different Ca2+-regulated mechanisms in the generation of cytosolic Ca2+ transients during neuronal excitation was compared in isolated primary and secondary nociceptive neurons of the rat. Application of carbonyl cyanide m-chlorophenylhydrazone (CCCP) significantly increased the peak amplitude of depolarization-induced transients in dorsal root ganglion (DRG) neurons in contrast to what was observed in spinal dorsal horn (DH) neurons. Application of CCCP immediately after termination of depolarization induced in DRG neurons massive Ca2+ release from the mitochondria into the cytosol. Application of CCCP immediately after termination of depolarization elicited a small Ca2+ release in DH neurons, which became more intense when application of the agent was delayed.  相似文献   

16.
钙信号是植物生长发育和逆境响应的重要调控因子, 是植物生理与逆境生物学研究领域中的热点之一。当植物细胞受到外界逆境刺激时, 其胞内会产生具有时空特异性的Ca2+信号变化, 这种变化首先被胞内钙感受器所感知并解码, 再由钙感受器互作蛋白将信号传递到下游, 从而激活下游早期响应基因的表达或相关离子通道的活性, 最终产生特异性逆境响应。植物细胞通过感知胞内钙信号的变化如何识别来自外界不同性质或不同强度的刺激, 是近几年植物生物学家所关注的科学问题。文章主要总结了近几年在植物钙感受器研究领域中的最新进展, 包括钙依赖蛋白激酶(CDPKs)、钙调素(CaMs)、类钙调素蛋白(CMLs)、类钙调磷酸酶B蛋白(CBLs)及其互作蛋白激酶(CIPKs)等的结构、功能及其介导的逆境信号途径, 并提供新的见解和展望。  相似文献   

17.
    
Isolated Na currents were studied in cultured chick sensory neurons using the patch clamp technique. On membrane depolarization, whole cell currents showed the typical transient and voltage-dependent time course as in nerve fibres. Na currents appeared at about-40 mV and reached maximum amplitude at around-10 mV. At low voltages (-30 to 0 mV), their turning-on was sigmoidal and inactivation developed exponentially. The ratio of inactivation time constants was found to be smaller than in squid axons and comparable to that of mammalian nodes of Ranvier. Peak conductance and steady-state inactivation were strongly voltage-dependent, with maximum slopes at-17 and-40 mV, respectively. The reversal potential was close to the Nernst equilibrium potential, indicating a high degree of ion-selectivity for the channel. Addition of 3M TTX, or replacement of Na by Choline in the external bath, abolished these currents. Internal pronase (1 mg/ml) and N-bromoacetamide (0.4 mM) made inactivation incomplete, with little effect on its rate of decay.Single Na channel currents were studied in outside-out membrane patches, at potentials between-50 and-20 mV. Their activation required large negative holding potentials (-90 mV). They were fully blocked by addition of TTX (3 M) to the external bath. At-40 mV their mean open time was about 2ms and the amplitude distribution could be fitted by a single Gaussian curve, indicating the presence of a homogeneous population of channels with a conductance of 11±2 pS. Probability of opening increased and latency to first opening decreased with increasing depolarization. Inactivation of the channel became faster with stronger depolarizations, as measured from the inactivation time course of sample averages. Internal pronase (0.1 mg/ml) produced effects on inactivation comparable to those on whole cell currents. Openings of the channel had a tendency to occur in bursts and showed little inactivation during pulses of 250 ms duration. The open lifetime of the channel at low potentials (-50,-40 mV) was only three times larger than in control patches, suggesting that Na channels in chick sensory neurons can close several times before entering an inactivating absorbing state.  相似文献   

18.
钙指示剂常被用于细胞及细胞器钙信号的检测,是钙信号转导研究中必不可少的工具.目前的钙指示剂分两大类,包括化学钙指示剂,如Fura-2、Indo-1、Fluo-4等,和基因编码的钙指示蛋白如D1ER、GCaMP、CEPIAler等.随着技术的发展及研究需求的不断提升,各版本的钙指示剂也在不断更新.本文对已有的钙指示剂进行...  相似文献   

19.
Induction of apoptosis in keratinocytes by UV light is a critical event in photocarcinogenesis. Although p53 is of importance in this process, evidence exists that other pathways play a role as well. Therefore, we studied whether the apoptosis-related surface molecule CD95 (Fas/APO-1) is involved. The human keratinocyte cell line HaCaT expresses CD95 and undergoes apoptosis after treatment with UV light or with the ligand of CD95 (CD95L). Incubation with a neutralizing CD95 antibody completely prevented CD95L-induced apoptosis but not UV-induced apoptosis, initially suggesting that the CD95 pathway may not be involved. However, the protease CPP32, a downstream molecule of the CD95 pathway, was activated in UV-exposed HaCaT cells, and UV-induced apoptosis was blocked by the ICE protease inhibitor zVAD, implying that at least similar downstream events are involved in CD95- and UV-induced apoptosis. Activation of CD95 results in recruitment of the Fas-associated protein with death domain (FADD) that activates ICE proteases. Immunoprecipitation of UV-exposed HaCaT cells revealed that UV light also induces recruitment of FADD to CD95. Since neutralizing anti-CD95 antibodies failed to prevent UV-induced apoptosis, this suggested that UV light directly activates CD95 independently of the ligand CD95L. Confocal laser scanning microscopy showed that UV light induced clustering of CD95 in the same fashion as CD95L. Prevention of UV-induced CD95 clustering by irradiating cells at 10°C was associated with a significantly reduced death rate. Together, these data indicate that UV light directly stimulates CD95 and thereby activates the CD95 pathway to induce apoptosis independently of the natural ligand CD95L. These findings further support the concept that UV light can affect targets at the plasma membrane, thereby even inducing apoptosis.  相似文献   

20.
Previous studies from this and other laboratories demonstrated that many embryonic sensory ganglion cells in the rat transiently express the catecholamine synthesizing enzyme tyrosine hydroxylase (TH), a trait not expressed by most mature sensory neurons. We, therefore, sought to determine whether transient expression was uniquely associated with catecholaminergic traits, or, alternatively, whether embryonic ganglion cells transiently expressed peptidergic properties as well. Of the four peptides examined {somatostatin [somatotropin release inhibiting factor] (SRIF), galanin (Gal), calcitonin gene-related peptide (CGRP), and substance P (SP)}, only SRIF was found to be transiently expressed during early stages of sensory gangliogenesis. Surprisingly, SRIF immunoreactivity was observed in virtually all cranial and spinal sensory ganglion cells on embryonic day (E) 12.5. In addition to perikaryal labeling, intense SRIF immunoreactivity was also observed in the central and peripheral processes of E12.5 sensory neurons, suggesting the peptide may be released from nerve endings. The time course of SRIF appearance in cranial ganglion cells paralleled that previously described for TH, and double labeling studies revealed extensive co-localization of these two phenotypes. By E16.5, however, the number of neurons expressing SRIF had diminished markedly, indicating that SRIF is only transiently expressed by most sensory neurons during early stages of ganglion development. An unexpected finding was that transient expression of SRIF is also a prominent feature of sympathetic ganglion cells; however, the temporal pattern of staining in the sympathetic and sensory ganglia differed substantially. Whereas virtually no SRIF staining was observed in E12.5 sympathetics, the vast majority of cells in the E16.5 superior cervical ganglion (SCG) were labeled. This contrasted sharply with the adult SCG, in which only low levels of SRIF expression were found. These findings demonstrate that SRIF peptide is transiently expressed at high levels in peripheral sensory and sympathetic neurons during embryogenesis. The time course and widespread distribution of SRIF expression indicates that the peptide may play a role in early stages of ganglion cell growth and development. Moreover, these data, in conjunction with previous studies demonstrating SRIF immunoreactivity in developing central neurons, suggest that transient expression of this peptide is a common property of diverse neuronal cell types. © 1992 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号