首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
激活Hedgehog信号通路可抑制间充质干细胞成脂分化,但抑制Hedgehog信号通路是否可促进脂肪细胞分化研究结果却并不一致.本研究采用环靶明诱导C3H10T1/2细胞成脂分化,并以国际公认的成脂诱导剂混合物(胰岛素、地塞米松、吲哚美辛和IBMX)诱导细胞分化作为参考. qRT-PCR结果显示,在10 μmol/L环靶明(cyclopamine)处理的C3H10T1/2细胞中,Hedgehog信号通路各基因相对表达量显著下降,而成脂分化调控基因PPARγ,C/EBPα和成脂分化标志基因FABP4相对表达量显著升高(P < 0.05). 与此一致,Western印迹结果表明,在环靶明处理的C3H10T1/2细胞中,Hedgehog信号通路中的Shh蛋白和Gli1蛋白表达水平显著下降,成脂分化相关的PPARγ、C/EBPα和FABP4蛋白表达水平显著升高(P < 0.05). 此外,油红O染色方法证明,环靶明处理可诱导C3H10T1/2细胞成脂分化.以上研究结果提示,抑制Hedgehog信号通路对小鼠胚胎间充质干细胞的成脂分化具有促进作用,并可能为瘦肉型猪的培育和猪肉品质调控研究提供参考依据.  相似文献   

3.
Hung SC  Chang CF  Ma HL  Chen TH  Low-Tone Ho L 《Gene》2004,340(1):141-150
  相似文献   

4.
分离培养猪脂肪间充质干细胞(adipose mesenchymal stem cells, AMSCs),流式细胞仪鉴定其表面标记.利用MTT比色检测不同浓度的全反式维甲酸(all trans retinoic acid, ATRA)对猪AMSCs增殖的影响;光学显微镜下观察猪AMSCs向脂肪细胞分化的形态学变化;油红O染色提取法分析不同浓度ATRA对猪AMSCs成脂分化的影响;RT PCR检测脂肪细胞分化标志基因LPL和aP2 mRNA的变化.MTT比色结果显示,生理浓度(1×10-9~1×10-8 mol/L)和药理浓度(1×10-7~1×10-5 mol/L)ATRA对猪AMSCs增殖均没有影响.油红O染色提取法结果表明,除1×10-7 mol/L ATRA对猪AMSCs成脂分化没有影响外,生理浓度(1×10-9~1×10-8 mol/L)和其它药理浓度(1×10-6~1×10-5 mol/L)ATRA均显著抑制猪AMSCs成脂分化(P<0.05).RT-PCR检测显示,ATRA显著抑制脂肪细胞分化标志基因LPL和aP2 mRNA表达(P<0.05).  相似文献   

5.
6.
7.
8.
9.
The molecular mechanisms that couple growth arrest and cell differentiation were examined during adipogenesis. Here, to understand the cyclin-dependent kinase inhibitor (CKI) genes involved in the progression of adipogenic differentiation, we examined changes in the protein and mRNA expression levels of CKI genes in vitro. During the onset of growth arrest associated with adipogenic differentiation, two independent families of CKI genes, p27Kip1 and p18INK4c, were significantly increased. The expressions of p27Kip1 and p18INK4c, regulated at the level of protein and mRNA accumulation, were directly coupled to adipogenic differentiation. This finding was supported by the inhibition of adipogenic differentiation caused by short interfering RNA (siRNA). In this study, we investigated the regulatory effects of transforming growth factor beta-1 (TGFβ-1) on CKI genes involved in adipogenic differentiation of bone marrow-derived human mesenchymal stem cells (hMSCs). Only the up-regulation of p18INK4c during adipogenic differentiation, and not that of the p27Kip1 gene was prevented by treatment with TGFβ-1, one of the factors that inhibit adipogenesis in vitro. This finding indicates a close correlation between adipogenic differentiation and p18INK4c induction in hMSCs. Thus, these data demonstrate a role for the differentiation-dependent cascade expression of cyclin-dependent kinase inhibitors in regulating adipogenic differentiation, thereby providing a molecular mechanism that couples growth arrest and differentiation.  相似文献   

10.
11.
探讨骨形态发生蛋白2(BMP2)诱导鼠胚胎间充质干细胞C3H10T1/2成脂肪分化能力,为临床脂肪代谢疾病的治疗提供理论基础.培养多潜能的间充质干细胞C3H10T1/2,用20 μg/ml BMP2对其诱导一定时间后,RT-PCR检测是否存在BMP信号通路中关键分子BMP受体BMPR I, BMPR Ⅱ及Smad 1/5/8的表达.Western印迹检测Smad 蛋白及MAPK 信号通路中p38磷酸化水平变化,QRT PCR检测成脂肪标志基因aP2以及成脂肪相关转录因子PPARγ,C/EBPα,C/EBPβ表达水平,同时用油红O染色,观测C3H10T1/2细胞成脂肪分化情况.经BMP2诱导后,C3H10T1/2细胞成脂肪分化标志(油红O染色)显著增加,Smad 蛋白及p38磷酸化水平有所上升,同时成脂肪标志基因aP2以及成脂肪相关转录因子PPARγ,C/EBPα,C/EBPβ表达水平各有一定程度提高.BMP2具有诱导C3H10T1/2细胞成脂肪分化能力,其成脂肪分化呈现对BMP2作用的时间依赖性.  相似文献   

12.
13.
During adipogenic differentiation human mesenchymal stem cells (hMSC) produce collagen type IV. In immunofluorescence staining differentiating hMSCs started to express collagen type IV when Oil Red O-positive fat droplets appeared intracellularly. Quantitative real time-polymerase chain reaction confirmed progressive increase of collagen type IV α1 and α2 mRNA levels over time, 18.6- and 12.2-fold by day 28, respectively, whereas the copy numbers of α3-α6 mRNAs remained rather stable and low. Type IV collagen was in confocal laser scanning microscopy seen around adipocytes, where also laminins and nidogen were found, suggesting pericellular deposition of all key components of the fully developed basement membrane. Immunofluorescence staining of matrix metalloproteinase-2 (MMP-2, 72 kD type IV collagenase, gelatinase A) and MMP-9 (92 kD type IV collagenase, gelatinase B) disclosed only faint staining of MSCs, but MMP-9 was strongly induced during adipogenesis, whereas MSC supernatants disclosed in zymography pro-MMP-2 and faint pro-MMP-9 bands, which increased over time, with partial conversion of pro-MMP-2 to its active 62 kD form. Differentiation was associated with increasing membrane type 1-MMP/MMP-14 and tissue inhibitor of metalloproteinase-2 (TIMP-2) staining, which may enable participation of type IV collagenases in basement membrane remodelling via ternary MT1-MMP/TIMP-2/MMP-2 or -9 complexes, focalizing the fully active enzyme to the cell surface. MMP-9, which increased more in immunofluorescence staining, was perhaps preferentially bound to cell surface and/or remodelling adipocyte basement membrane. These results suggest that upon MSC-adipocyte differentiation collagen type IV synthesis and remodelling become necessary when intracellular accumulation of fat necessitates a dynamically supporting and instructive, partly denatured adipogenic pericellular type IV collagen scaffold.  相似文献   

14.
15.
李欢  冯晋川  李贵林  王讯  李明洲  刘海峰 《遗传》2018,40(9):758-766
长链非编码RNA (long non-coding RNA, lncRNA)是一类长度大于200nt、没有长开放阅读框架但往往具有mRNA结构特征的RNA,可以在转录及转录后水平参与基因的表达调控。近年来,有研究证实lncRNA对脂肪生成具有重要作用。Lnc-RAP3位于小鼠(Mus musculus)17号染色体,其表达量在小鼠脂肪细胞分化前后呈现显著差异,但其具体的生物学功能尚不清楚。为探讨lnc-RAP3在小鼠3T3-L1前脂肪细胞成脂分化中的作用,本文首先构建了lnc-RAP3的真核表达载体pcDNA3.1-RAP3,利用脂质体将pcDNA3.1-RAP3和人工合成的lnc-RAP3的siRNAs分别转染3T3-L1前脂肪细胞,并对转染后的细胞进行诱导分化,并通过油红O染色、qRT-PCR检测成脂分化相关基因表达等方法比较过表达和敲降lnc-RAP3对3T3-L1前脂肪细胞成脂分化的影响。结果显示,过表达lnc-RAP3后,细胞内脂滴聚集显著减少(P<0.05),在诱导分化第0 d、2 d和4 d时C/EBPαGlut4PPARγLPLFAS的表达水平均呈显著(P<0.05)或极显著(P<0.01)下降;敲降lnc-RAP3后,细胞内脂滴聚集显著增多(P<0.05),同时在诱导分化第0 d、2 d时PPARγLPLC/EBPαFASGlut4的表达水平呈显著(P<0.05)或极显著(P<0.01)升高。本研究结果表明,lnc-RAP3可能通过影响成脂分化相关基因的表达来抑制3T3-L1前脂肪细胞的成脂分化。  相似文献   

16.
Myostation (MSTN), which is primarily expressed in muscle, plays an important role in myogenic and adipogenic cells. However, there is little information about whether MSTN displays different roles between adipose-derived stem cells (ADSCs) and muscle satellite cells (MSCs). The two kinds of cells can both exist in the muscle and differentiate into adiposities. In this research, we isolated ADSCs and MSCs from porcine fat tissues and semitendinosus muscle, respectively, to investigate the effect of MSTN on the adipogenesis of those cells. ADSCs and MSCs were treated with recombinant human MSTN during the induction of adipogenesis or before the induction of differentiation. Then, we evaluated adipogenesis by Oil Red O staining and assessed the expression patterns of adipocyte-specific fatty acid binding protein (aP2) and peroxisome proliferator-activated receptor (PPAR) γ using real-time polymerase chain reaction methods. Our results indicated that the treatment with MSTN before or during the induction of differentiation in MSCs could both inhibit the adipogenesis. However, the treatment with MSTN only during the induction of differentiation in ADSCs could suppress the adipogenesis. Those results showed that MSTN had different roles in the adipogenesis of ADSCs and MSCs. It can shed new light on the origin of adipocyte located in muscle.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号