首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S100A7 (psoriasin) is a calcium‐ and zinc‐binding protein implicated in breast cancer. We have shown previously that S100A7 enhances survival mechanisms in breast cells through an interaction with c‐jun activation domain binding protein 1 (Jab1), and an engineered S100A7 triple mutant (Asp56Gly, Leu78Met, and Gln88Lys—S100A73) ablates Jab1 binding. We extend these results to include defined breast cancer cell lines and demonstrate a disrupted S100A73/Jab1 phenotype is maintained. To establish the basis for the abrogated Jab1 binding, we have recombinantly produced S100A73, demonstrated that it retains the ability to form an exceptionally thermostable dimer, and solved the three dimensional crystal structure to 1.6 Å. Despite being positioned at the dimer interface, the Leu78Met mutation is easily accommodated and contributes to a methionine‐rich pocket formed by Met12, Met15, and Met34. In addition to altering the surface charge, the Gln88Lys mutation results in a nearby rotameric shift in Tyr85, leading to a substantially reorganized surface cavity and may influence zinc binding. The final mutation of Asp56 to Gly results in the largest structural perturbation shortening helix IV by one full turn. It is noteworthy that position 56 lies in one of two divergent clusters between S100A7 and the functionally distinct yet highly homologous S100A15. The structure of S100A73 provides a unique perspective from which to characterize the S100A7‐Jab1 interaction and better understand the distinct functions between S100A7, and it is closely related paralog S100A15.  相似文献   

2.
Mounting evidence has been shown that integrin-mediated cellular adhesion confers resistance to chemotherapy of multiple myeloma. The molecular mechanism underlying cell adhesion-mediated drug resistance (CAM-DR) is, however, poorly understood. In this report, we demonstrated that RPMI 8,226 cells accumulated p27Kip1 in the nucleus when they were adhered to fibronectin (FN). The adhesion-mediated p27Kip1 nuclear recruitment was regulated via the down-regulation of Jab1, a negative regulator of cell cycle. Overexpression of Jab1 reversed the elevated p27Kip1 in the nucleus, which needed phosphorylation of p27Kip1 on Serine 10, whereas inhibition of Jab1 by siRNA further increased the elevated p27Kip1. Furthermore, we found overexpression of Jab1 did not affect 8,226 cells adhesion to FN, but reversed doxorubicin or mitoxantrone-induced CAM-DR phenotype. In conclusion, our data suggest that Jab1 plays an important role in CAM-DR, which depends on pSer10-p27Kip1-mediated subcellular localization of p27Kip1. The understanding of this novel molecular mechanism may prove valuable in designing new therapeutic approaches for CAM-DR in Multiple myeloma.  相似文献   

3.
4.
p27Kip1 is a cyclin-dependent kinase inhibitor that plays a critical role in regulating G1/S transition, and whose activity is, in part, regulated through interactions with D-type cyclins. We have generated the BD1-9 cell line, a BaF3 pro-B cells derivative in which cyclin D1 can be induced rapidly and reversibly by ponasterone A. The induction of cyclin D1 expression leads to a targeted p27Kip1 accumulation in both cytoplasmic and nuclear compartments. But, only the p27Kip1 form phosphorylated on serine 10 (pSer10-p27Kip1) accumulates in BD1-9 cells. We found that the binding of cyclin D1 and pSer10-p27Kip1 prevents p27Kip1 degradation by the cytoplasmic Kip1 ubiquitylation-promoting complex (KPC) proteosomic pathway. Importantly, the nuclear CDK2 activity which is crucial for G1/S transition is not altered by p27Kip1 increase. Using siRNA techniques, we revealed that p27Kip1 inhibition does not affect the distribution of BD1-9 cells in the different phases of the cell cycle. Our study demonstrates that aberrant cyclin D1 expression acts as a p27Kip1 trap in B lymphocytes but does not induce p27Kip1 relocation from the nucleus to the cytoplasm and does not modulate the G1/S transition. Since our cellular model mimics what observed in aggressive lymphomas, our data bring new insights into the understanding of their physiopathology.  相似文献   

5.
6.
The fifth component of the COP9 signalosome complex, Jab1/CSN5, directly binds to and induces specific down-regulation of the cyclin-dependent kinase inhibitor p27 (p27(Kip1)). Nuclear-cytoplasmic translocation plays an important role because leptomycin B (LMB), a chemical inhibitor of CRM1-dependent nuclear export, prevents p27 degradation mediated by Jab1/CSN5. Here we show that Jab1/CSN5 functions as an adaptor between p27 and CRM1 to induce nuclear export and subsequent degradation. Jab1/CSN5, but not p27, contains a typical leucine-rich nuclear export signal (NES) sequence conserved among different species, through which CRM1 bound to Jab1/CSN5 in an LMB-sensitive manner. Alteration of conserved leucine residues to alanine within Jab1/CSN5-NES abolished the interaction with CRM1 in vitro and impaired LMB-sensitive nuclear export and the ability to induce p27 breakdown in cultured cells. A Jab1/CSN5 truncation mutant lacking NES reversed p27 down-regulation induced by the full-length Jab1/CSN5, indicating that this mutant functions as a dominant negative (DN-Jab1). Introduction of DN-Jab1 into proliferating fibroblasts increased the level of p27 protein, thereby inducing growth arrest of the cells. Random mutagenesis analysis revealed that specific aspartic acid, leucine, and asparagine residues contained in the Jab1/CSN5-binding domain of p27 were required for interaction with Jab1/CSN5 and for down-regulation of p27. Glycerol gradient and cell fractionation experiments showed that at least two different forms of Jab1/CSN5-containing complexes existed within the cell. One is the conventional 450-kDa COP9 signalosome (CSN) complex located in the nucleus, and the other is much smaller (around 100-kDa), containing only a subset of CSN components (CSN4-8 but not CSN1-3), and mainly located in the cytoplasm. Treatment of cells with LMB greatly reduced the level of the smaller complex, suggesting that it originated from the CSN complex by nuclear export. Besides Jab1/CSN5, CSN3, -6, -7, and -8 were capable of inducing p27 down-regulation, when ectopically expressed. These results indicate that cytoplasmic shuttling regulated by Jab1/CSN5 and other CSN components may be a new pathway to control the intracellular abundance of the key cell cycle regulator.  相似文献   

7.
8.
Human S100A7 (psoriasin) is highly expressed in psoriasis and other inflammatory diseases; however, the function of S100A7 in wound repair remains largely unknown. Here we demonstrated that skin injury increased the expression of S100A7. Damaged cells from wounded skin induced the expression of S100A7 via the activation of Toll-like receptor 3 (TLR3) followed by the activation of p38 MAPK. S100A7, in turn, acted on keratinocytes to induce the expression of terminal differentiation marker gene loricrin through the activation of p38 MAPK and caspase-1. The differentiation of keratinocytes induced by S100A7 resulted in skin stratification, thus efficiently promoting wound closure. Taken together, our results demonstrate that the activation of TLR3 accelerates wound closure via the induction of S100A7 to induce keratinocyte differentiation. These findings also provide new insights into the development of different forms of treatment with skin wounds.  相似文献   

9.
We constructed a dual regulated expression vector cassette (pDuoRex) whereby two heterologous genes can be independently regulated via streptogramin- and tetracycline-responsive promoters. Two different constructs containing growth-promoting and growth-inhibiting genes were stably transfected in recombinant Chinese hamster ovary (CHO) cells that express the streptogramin- and tetracycline-dependent transactivators in a dicistronic configuration. An optimally balanced heterologous growth control scenario was achieved by reciprocal expression of the growth-inhibiting human cyclin-dependent kinase inhibitor p27Kip1 in sense (p27Kip1S) and antisense (p27Kip1AS) orientation. Exclusive expression of p27Kip1S resulted in complete G1-phase-specific growth arrest, while expression of only p27Kip1AS showed significantly increased proliferation compared to control cultures (both antibiotics present), presumably by decreasing host cell p27Kip1 expression. In a second system, a derivative of pDuoRex encoding streptogramin-responsive expression of the growth-promoting SV40 small T antigen (sT) and tetracycline-regulated expression of p27Kip1 was stably transfected into CHO cells. Expression of sT alone resulted in an increase in cell proliferation, but the expression of p27Kip1 failed to provide the expected G1-specific growth arrest despite having demonstrated expression of the protein. This illustrates the difficulty in balancing the complex pathways underlying cell proliferation control through the expression of two functionally distinct genes involved in those pathways, and how a single-gene sense/antisense approach using pDuoRex can overcome this barrier to complete metabolic engineering control.  相似文献   

10.
Upon exposure to adipogenesis-inducing hormones, confluent 3T3-L1 preadipocytes express C/EBPβ (CCAAT/enhancer binding protein β). Early induced C/EBPβ is inactive but, after a lag period, acquires its DNA-binding capability by sequential phosphorylation. During this period, preadipocytes pass the G1/S checkpoint synchronously. Thr188 of C/EBPβ is phosphorylated initially to prime the factor for subsequent phosphorylation at Ser184 or Thr179 by GSK3β, which translocates into the nuclei during the G1/S transition. Many events take place during the G1/S transition, including reduction in p27Kip1 protein levels, retinoblastoma (Rb) phosphorylation, GSK3β nuclear translocation, and C/EBPβ binding to target promoters. During hypoxia, hypoxia-inducible factor-1α (HIF-1α) is stabilized, thus maintaining expression of p27Kip1, which inhibits Rb phosphorylation. Even under normoxic conditions, constitutive expression of p27Kip1 blocks the nuclear translocation of GSK3β and DNA binding capability of C/EBPβ. Hypoxia also blocks nuclear translocation of GSK3β and DNA binding capability of C/EBPβ in HIF-1α knockdown 3T3-L1 cells that fail to induce p27Kip1. Nonetheless, under hypoxia, these cells can block Rb phosphorylation and the G1/S transition. Altogether, these findings suggest that hypoxia prevents the nuclear translocation of GSK3β and the DNA binding capability of C/EBPβ by blocking the G1/S transition through HIF-1α-dependent induction of p27Kip1 and an HIF-1α/p27-independent mechanism.  相似文献   

11.
12.
The COP9 signalosome subunit 6 (CSN6), which is involved in ubiquitin-mediated protein degradation, is overexpressed in many types of cancer. CSN6 is critical in causing p53 degradation and malignancy, but its target in cell cycle progression is not fully characterized. Constitutive photomorphogenic 1 (COP1) is an E3 ubiquitin ligase associating with COP9 signalosome to regulate important target proteins for cell growth. p27 is a critical G1 CDK inhibitor involved in cell cycle regulation, but its upstream regulators are not fully characterized. Here, we show that the CSN6-COP1 link is regulating p27Kip1 stability, and that COP1 is a negative regulator of p27Kip1. Ectopic expression of CSN6 can decrease the expression of p27Kip1, while CSN6 knockdown leads to p27Kip1 stabilization. Mechanistic studies show that CSN6 interacts with p27Kip1 and facilitates ubiquitin-mediated degradation of p27Kip1. CSN6-mediated p27 degradation depends on the nuclear export of p27Kip1, which is regulated through COP1 nuclear exporting signal. COP1 overexpression leads to the cytoplasmic distribution of p27, thereby accelerating p27 degradation. Importantly, the negative impact of COP1 on p27 stability contributes to elevating expression of genes that are suppressed through p27 mediation. Kaplan-Meier analysis of tumor samples demonstrates that high COP1 expression was associated with poor overall survival. These data suggest that tumors with CSN6/COP1 deregulation may have growth advantage by regulating p27 degradation and subsequent impact on p27 targeted genes.  相似文献   

13.
S100A4, a member of the S100 family of proteins, plays an important role in matrix remodeling by up-regulating the expression of matrix metalloproteinases (MMPs). We have previously shown that S100A4 is overexpressed in diseased cartilage and that extracellular S100A4 stimulates MMP-13 production, a major type II collagen-degrading enzyme, via activation of receptor for advanced glycation end product signaling. In the present study, using human articular chondrocytes, we show that intracellular S100A4 translocated into the nucleus upon interleukin-1β (IL-1β) stimulation and translocation required post-translational modification of S100A4 by the sumo-1 protein. Two sumoylation sites were identified on the S100A4 molecule, Lys22 and Lys96. Mutation of these lysine residues abolished the ability of S100A4 to be sumoylated and to translocate into the nucleus. Blocking of sumoylation and nuclear transport of S100A4 inhibited the IL-1β-induced production of MMP-13. Nuclear S100A4 was bound to the promoter region of MMP-13 in IL-1β-treated cells. Thus, we demonstrate a novel mechanism for sumoylated S100A4 as a regulator of expression of the MMP-13 gene.  相似文献   

14.
The cyclin-dependent kinase (CDK) inhibitor p27(Kip1) is an important regulator of cell cycle progression as it negatively regulates G(0/1) progression and plays a major role in controlling the cell cycle. The screening of the p27(Kip1) sequence identified many potential phosphorylation sites. Although Ser(10) and Thr(187) were shown to be important for p27(Kip1) function, the effects of a combined deletion of both sites on p27(Kip1) function are still unknown. To investigate the effects of the overexpression of exogenous p27(Kip1) protein lacking both the Ser(10) and Thr(187) sites on subcellular localization, cell cycle, and proliferation, a plasmid was constructed containing mutations of p27(Kip1) at Ser(10) and Thr(187) (S10A/T187A p27), and transfected into the HepG(2) cell line with Lipofectamine. Wild-type and mutant p27 plasmids S10A and T187A were transfected separately as control groups. As a result, the proliferation of HepG(2) cells was greatly inhibited and cell cycle was arrested in G(0/1) phase after exogenous p27(Kip1) double-mutant expression. All recombinant p27(Kip1) constructs were distributed in the nucleus after synchronization in G(0) phase by treatment with leptomycin B. The expressed wild-type and T187A p27(Kip1) proteins were translocated from the nucleus into cytoplasm when cells were exposed to 20% serum for 8 h, whereas the S10A p27(Kip1) and S10A/T187A p27(Kip1) proteins remained in the nucleus. FACS profiles and cell growth curves indicated that the Ser(10) and Thr(187) double mutant has no significant effect on the biological activities of cell cycle control and growth inhibition. Our results suggest that expression of the p27(Kip1) double-mutant abolishes its cytoplasmic redistribution but does not abrogate G(0/1) phase arrest in the HepG(2) cell line.  相似文献   

15.
S100A7 (psoriasin), an EF-hand type calcium binding protein localized in epithelial cells, regulates cell proliferation and differentiation. An S100A7 overexpression may occur in response to inflammatory stimuli, such in psoriasis, a chronic inflammatory autoimmune-mediated skin disease. Increasing evidence suggests that S100A7 plays critical roles in amplifying the inflammatory process in psoriatic skin, perpetuating the disease phenotype. This review will discuss the interactions between S100A7 and cytokines in psoriatic skin. Furthermore, we will focus our discussion on regulation and functions of S100A7 in psoriasis. Finally, we will discuss the possible use of S100A7 as therapeutic target in psoriasis.  相似文献   

16.
Sgt1 was originally identified in yeast as a suppressor of the Skp1 protein. Later, it was found that Sgt1 is present in plant and mammalian organisms and that it binds other ligands such as S100A6, a calcium-binding protein. In this work we show that in HEp-2 cells Sgt1 translocates to the nucleus due to heat shock. We also found that in HEp-2 cells with diminished level of S100A6, due to stable transfection with siRNA against S100A6, such translocation occurred at a much smaller scale in comparison with cells expressing a normal level of S100A6. Moreover, translocation of Sgt1 was observed in HEp-2 cells treated with thapsigargin instead of heat shock. In contrast thapsigargin was ineffective in cells with diminished level of S100A6. Thus, our results suggest that increase in intracellular concentration of Ca2+, transduced by S100A6, is necessary for nuclear translocation of the Sgt1 protein.  相似文献   

17.
Although a positive association between cigarette smoking and colorectal adenoma development is consistently found, the association with colorectal cancer remains controversial. We evaluated the potential roles of p27Kip1 and bcl-2 protein expressions in conjunction with cigarette smoking exposure and colorectal cancer risk in a hospital-based case-control study. A total of 163 colorectal cancer patients from Roswell Park Cancer Institute and Buffalo General Hospital and 326 healthy controls responded to a standardized questionnaire on colorectal cancer risk factors including detailed information on their history of cigarette smoking; 110 of the patients' tumours were available for immunohistochemical analysis of p27Kip1 and bcl-2 protein overexpression. An avidin-biotin immunoperoxidase procedure was used to determine expression after incubation with mouse monoclonal p27Kip1 and mouse monoclonal bcl-2 antibodies, respectively. A statistically significant trend for total pack-years of smoking was found when p27Kip1 positive cases were compared with p27Kip1 negative cases (trend test, p = 0.007). Although a weak inverse association was observed with smoking exposure among p27Kip1 negative tumour cases in comparison to controls, a significant dose-response association was seen with p27Kip1 positive tumours. The relative risk of developing a p27Kip1 positive tumour was estimated to be 1.17 (95% CI 0.54-2.54) for those with less than 20 pack-years, 1.95 (95 % CI 0.95-3.97) for those with 20-39 pack-years, and 2.25 (95% CI 1.14-4.45) for those with greater than 39 pack-years of smoking exposure (trend test, p = 0.009) when compared with controls. When cases with bcl-2 expression were compared with cases without bcl-2 expression, suggestion of a trend was also observed with pack-years smoked (trend test, p = 0.09). In our study of 110 patients with sporadic colorectal cancer and 326 controls, we observed differences in associations between cigarette smoking and expressions in p27Kip1 and bcl-2. Our data suggest that bcl-2 overexpression (or a bcl-2 dependent pathway) is associated with cigarette smoking in the development of colorectal cancer, whereas a loss of p27Kip1 expression is not. These associations indicate that there is aetiological heterogeneity in colorectal cancer development, and that they can indirectly allude to where these changes in protein expression occur in the adenoma-carcinoma sequence (i.e. early versus late events).  相似文献   

18.
Psoriasin is a low molecular weight protein of the S100 family, which is highly upregulated in psoriatic epidermis, and whose function is related to skin inflammatory responses. We have applied a cDNA probe from the corresponding psoriasin gene S100A7 in a refined localisation analysis. S100A7 was mapped physically by human/rodent somatic cell hybrid analysis, and more precisely genetically by multilocus linkage analysis of 40 CEPH (Centre d'Etude du Polymorphisme Humain) families. The resulting 12-point linkage map was supported by odds of at least 1000:1, where S100A7 could be placed with a multipoint lodscore of 27.4 in an approximately 7cM interval. The order of the 12 loci was as follows (with the best estimates of recombination frequencies given in between): AMY2B-0.091-D1S730.039-D1S11-0.053-D 1 S189 -0.017-D1S252-0.017-D1S13-0.078-DIZ5-0.051-S100A7-0.022- MUC1-0.026-SPTA1-0.066-ATP1A2-0.014-APOA2. Furthermore, from this map S100A7 could be assigned to the regional position of chromosome 1cen-q21. The linkage information presented should be of great value in association and linkage studies of diseases where psoriasin, or some of the several other very closely linked and functionally related genes, are seen as candidate genes, e.g. in psoriasis.  相似文献   

19.
S100A8 and S100A9 are members of the S100A8 protein family that exist as homodimers and heterodimers in neutrophils, monocytes, and macrophages. Recent studies have shown the pivotal roles of S100A8 and S100A9 in the propagation of inflammation and keratinocyte proliferation in psoriasis. We found significant up-regulation of S100A8 and S100A9 secretion from keratinocytes in psoriatic lesions. To mimic the in vivo secretory conditions of S100A8 and S100A9 from psoriatic epidermal keratinocytes, we used the culture medium (CM) of S100A8 and S100A8/A9 adenovirus-transduced keratinocytes to investigate the functions of S100A8 and S100A9. We detected increased levels of various pro-inflammatory cytokines in the CM, including IL-8 and TNF-α, which are involved in aggravating psoriatic skin lesions, and IL-6 and members of the CXCL family of pro-angiogenic cytokines. The CM increased immune cell migration and increased angiogenesis in human umbilical vein endothelial cells. In conclusion, we found that the upregulated production of S100A8 and S100A9 by psoriatic epidermal keratinocytes activated adjacent keratinocytes to produce several cytokines. Moreover, S100A8 and S100A9 themselves function as pro-angiogenic and chemotactic factors, generating a psoriatic milieu in skin.  相似文献   

20.
S100A15 (koebnerisin) is overexpressed in psoriatic skin and displays distinct localizations in skin and breast with divergent functions in inflammation. Here we report the backbone and side-chain resonance assignments for the Ca2+-bound human S100A15.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号