首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:探讨小鼠间充质干细胞(MSCs)定向诱导分化成脂肪细胞微小RNA(miRNA)表达的变化,为进一步研究miRNA调控MSCs向脂肪细胞分化的分子机制奠定基础。方法:采用全骨髓体外分离结合差速贴壁法纯化扩增C57BL/6小鼠MSCs,形态学观察细胞生长情况,并用免疫组化方法鉴定细胞表面抗原CD29、CIM4和CD34的表达。脂肪细胞分化诱导剂诱导MSCs分化为脂肪细胞,利用油红O染色,判断MSCs成脂分化情况。运用rrfiRNA芯片技术检测MSC8和脂肪细胞中差异表达的miRNA。结果:①倒置显微镜下观察,传5代后可获得均一性较高的MSCs;免疫组化显示90%以上的骨髓间质干细胞CD29、CD44阳性,CD34阴性。MSCs经脂肪诱导剂诱导后,胞内大量脂滴形成,油红O染色阳性;②基因微阵列分析表明,小鼠MSCs分化成脂肪细胞差异表达的miRNA共75个,其中20个表达上调、55个表达下调。结论:MSCs分化成脂肪细胞存在miRNA表达的变化,某些miRNA很可能具有重要的调控MSCs成脂分化的作用。  相似文献   

2.
    
Cellular therapies represent a new frontier in the treatment of neurological diseases. Accumulating evidence from preclinical studies of animal models suggests that mesenchymal stromal cells (MSCs), also known as mesenchymal stem cells, are an effective therapy for neurological diseases. In this study, we established human MSC lines from both cranial bone marrow (cBMMSCs) and iliac crest bone marrow (iBMMSCs) from the same donors and found that cBMMSCs show higher expression of neural crest-associated genes than iBMMSCs. Moreover, as observed in both mRNA and protein assays, neurogenic-induced cells from cBMMSCs expressed significantly higher levels of neural markers, such as NESTIN, SLUG, SOX9, and TWIST, than those from iBMMSCs. Thus, cBMMSCs showed a greater tendency than iBMMSCs to differentiate into neuron-like cells.  相似文献   

3.
    
The purpose of the present study was to determine the best cholinergic neuronal differentiation method of rhesus monkey bone marrow mesenchymal stem cells(BMSCs).Four methods were used to induce differentiation,and the groups were assigned accordingly:basal inducing group(culture media,bFGF,and forskolin);SHH inducing group(SHH,inducing group);RA inducing group(RA,basal inducing group);and SHH+RA inducing group(SHH,RA,and basal inducing group).All groups displayed neuronal morphology and increased expressio...  相似文献   

4.
    
This study explored the role played by combined ICA and bone mesenchymal stem cells (BMSCs) in repairing rabbit knee cartilage defects. Firstly, rabbit BMSCs were isolated and used to construct an in vitro cellular model of oxygen‐glucose deprivation/reoxygenation (OGD/R). Subsequently, ICA processing, Alcian blue staining, immunofluorescence and Western blot studies were performed to evaluate the ability of BMSCs to display signs of chondrogenic differentiation. Furthermore, a rabbit knee cartilage injury model was established in vivo. International Cartilage Repair Society (ICRS) macroscopic evaluations, H&E, Alcian blue and EdU staining, as well as immunohistochemistry, were analysed cartilage repair and pathological condition of the knee cartilage tissue. Our in vitro results showed that ICA promoted the chondrogenic differentiation of BMSCs, as well as aggrecan (AGR), bone morphogenetic protein 2 (BMP2) and COL2A1 protein expression in BMSCs. In vivo experiments showed that rabbits in the BMSCs or ICA treatment group had higher ICRS scores and displayed a better restoration of cartilage‐like tissue and chondrocyte expression on the surface of their cartilage defects. In conclusion, ICA or BMSCs alone could repair rabbit knee cartilage damage, and combined treatment with ICA and BMSCs showed a better ability to repair rabbit knee cartilage damage.  相似文献   

5.
Bone marrow-derived cells have been postulated as a source of multipotent mesenchymal stem cells (MSC). However, the whole fraction of MSC remains heterogeneous and the expansion of primitive subset of these cells is still not well established. Here, we optimized the protocol for propagating the low-adherent subfraction of MSC which results in long-term expansion of population characterized by CD45CD14+CD34+ phenotype along with expression of common MSC markers. We established that the expanded MSC are capable of differentiating into endothelial cells highly expressing angiogenic markers and exhibiting functional properties of endothelium. Moreover, we found these cells to be multipotent and capable of giving rise into cells from neuronal lineages. Interestingly, the expanded MSC form characteristic cellular spheres in vitro indicating primitive features of these cells. In sum, we isolated the novel multipotent subpopulation of CD45CD14+ CD34+ bone marrow-derived cells that could be maintained in long-term culture without losing this potential.  相似文献   

6.
7.
    
The matrix remodeling associated 7 (MXRA7) gene had been ill-studied and its biology remained to be discovered. Inspired by our previous findings and public datasets concerning MXRA7, we hypothesized that the MXRA7 gene might be involved in bone marrow mesenchymal stem cells (BMSCs) functions related to bone formation, which was checked by utilizing in vivo or in vitro methodologies. Micro-computed tomography of MXRA7-deficient mice demonstrated retarded osteogenesis, which was reflected by shorter femurs, lower bone mass in both trabecular and cortical bones compared with wild-type (WT) mice. Histology confirmed the osteopenia-like feature including thinner growth plates in MXRA7-deficient femurs. Immunofluorescence revealed less osteoblasts in MXRA7-deficient femurs. Polymerase chain reaction or western blot analysis showed that when WT BMSCs were induced to differentiate toward osteoblasts or adipocytes in culture, MXRA7 messenger RNA or protein levels were significantly increased alongside osteoblasts induction, but decreased upon adipocytes induction. Cultured MXRA7-deficient BMSCs showed decreased osteogenesis upon osteogenic differentiation induction as reflected by decreased calcium deposition or lower expression of genes responsible for osteogenesis. When recombinant MXRA7 proteins were supplemented in a culture of MXRA7-deficient BMSCs, osteogenesis or gene expression was fully restored. Upon osteoblast induction, the level of active β-catenin or phospho-extracellular signal-regulated kinase in MXRA7-deficient BMSCs was decreased compared with that in WT BMSCs, and these impairments could be rescued by recombinant MXRA7 proteins. In adipogenesis induction settings, the potency of MXRA7-deficient BMSCs to differentiate into adipocytes was increased over the WT ones. In conclusion, this study demonstrated that MXRA7 influences bone formation via regulating the balance between osteogenesis and adipogenesis in BMSCs.  相似文献   

8.
  总被引:11,自引:0,他引:11  
The characteristics and multilineage differentiation potential of bone marrow mesenchymal stem cells (BM MSC) remain controversial. This study aimed to characterize human BM MSC isolated by plastic adherent or antibody selection and their neuronal differentiation potential using growth factors or chemical inducing agents. MSC were found to express low levels of neuronal markers: neurofilament-M, beta tubulin III, and neuron specific enolase. Under a serum- and feeder cell-free condition, basic fibroblast growth factor, epidermal growth factor, and platelet-derived growth factor induced neuronal morphology in MSC. In addition to the above markers, these cells expressed neurotransmitters or associated proteins: gamma-aminobutyric acid, tyrosine hydroxylase and serotonin. These changes were maintained for up to 3 months in all bone marrow specimens (N = 6). In contrast, butylated hydroxyanisole and dimethylsulfoxide were unable to induce sustained neuronal differentiation. Our results show that MSC isolated by two different procedures produced identical lineage differentiation with defined growth factors in a serum- and feeder cell-free condition.  相似文献   

9.
骨髓间充质干细胞的定向分化一直是干细胞研究的重点,在其分化过程中有多条信号通路参与和调节。目前,Wnt通路在骨髓间充质干细胞定向分化过程中的作用是国外的研究热点。研究发现经典Wnt通路的激活与骨髓间充质干细胞的定向分化高度相关,故将其近年来的研究综述如下,从而为骨质疏松等疾病的治疗以及骨组织工程的发展提供必要的参考依据。  相似文献   

10.
In this work we describe the establishment of mesenchymal stem cells (MSCs) derived from embryonic stem cells (ESCs) and the role of bFGF in adipocyte differentiation. The totipotency of ESCs and MSCs was assessed by immunofluorescence staining and RT-PCR of totipotency factors. MSCs were successfully used to induce osteoblasts, chondrocytes and adipocytes. MSCs that differentiated into adipocytes were stimulated with and without bFGF. The OD/DNA (optical density/content of total DNA) and expression levels of the specific adipocyte genes PPARγ2 (peroxisome proliferator activated receptor γ2) and C/EBPs were higher in bFGF cells. Embryonic bodies had a higher adipocyte level compared with cells cultured in plates. These findings indicate that bFGF promotes adipocyte differentiation. MSCs may be useful cells for seeding in tissue engineering and have enormous therapeutic potential for adipose tissue engineering.  相似文献   

11.
12.
    
To explore the feasibility of repairing clinical cutaneous deficiency, autogenic bone marrow mesenchymal stem cells (BMSCs) were isolated and differentiated into epidermal cells and fibroblasts in vitro supplemented with different inducing factors and biomaterials to construct functional tissueengineered skin. The results showed that after 72 h induction, BMSCs displayed morphologic changes such as typical epidermal cell arrangement, from spindle shape to round or oval; tonofibrils, melanosomes and keratohyaline granules were observed under a transmission electronic microscope. The differentiated cells expressed epidermal stem cell surface marker CK19 (59.66% ± 4.2%) and epidermal cells differentiation marker CK10. In addition, the induced epidermal cells acquired the anti-radiation capacity featured by lowered apoptosis following exposure to UVB. On the other hand, the collagen microfibrils deposition was noticed under a transmission electronic microscope after differentiating into dermis fibroblasts; RT-PCR identified collagen type I mRNA expression in differentiated cells; radioimmunoassay detected the secretion of interleukin-6 (IL-6) and interleukin-8 (IL-8) (up to 115.06 pg/mL and 0.84 ng/mL, respectively). Further in vivo implanting BMSCs with scaffold material shortened skin wound repair significantly. In one word, autogenic BMSCs have the potential to differentiate into epidermal cells and fibroblasts in vitro, and show clinical feasibility acting as epidermis-like and dermis-like seed cells in skin engineering. Supported by the Major Technology Program of Beijing Municipal Science & Technology Commission (Grant No. H060920050130) and the Major State Basic Research Development Program of China (Grant No. 2005CB522702)  相似文献   

13.
目的:比较骨髓间充质干细胞、脂肪间充质干细胞、滑膜间充质干细胞3种间充质干细胞的成软骨分化潜能,为软骨组织工程中种子细胞的选择提供实验依据。方法:采用贴壁法分别分离提取兔骨髓间充质干细胞、脂肪间充质干细胞、滑膜间充质干细胞3种间充质干细胞,并进行传代培养,绘制3种间充质干细胞的生长曲线并比较其倍增时间。将3种间充质干细胞成软骨诱导14 d后,行甲苯胺蓝染色及II型胶原免疫组化染色以观测3种细胞成软骨分化能力。结果:脂肪间充质干细胞的倍增时间短于骨髓间充质干细胞,滑膜间充质干细胞的倍增时间最短;3种细胞成软骨诱导14 d后均产生糖胺聚糖和II型胶原,且组与组之间II型胶原表达水平的差异有统计学意义,骨髓间充质干细胞组高于脂肪间充质干细胞组(P0.01),滑膜间充质干细胞组高于骨髓间充质干细胞组(P0.01)。结论:在一定的培养条件下,3种间充质干细胞均有一定的成软骨细胞分化潜能,滑膜间充质干细胞最快的增殖速度及最强的成软骨分化潜能。  相似文献   

14.
To explore the feasibility of repairing clinical cutaneous deficiency, autogenic bone marrow mesenchymal stem cells (BMSCs) were isolated and differentiated into epidermal cells and fibroblasts in vitro supplemented with different inducing factors and biomaterials to construct functional tissueengineered skin. The results showed that after 72 h induction, BMSCs displayed morphologic changes such as typical epidermal cell arrangement, from spindle shape to round or oval; tonofibrils, melanosomes and keratohyaline granules were observed under a transmission electronic microscope. The differentiated cells expressed epidermal stem cell surface marker CK19 (59.66% ± 4.2%) and epidermal cells differentiation marker CK10. In addition, the induced epidermal cells acquired the anti-radiation capacity featured by lowered apoptosis following exposure to UVB. On the other hand, the collagen microfibrils deposition was noticed under a transmission electronic microscope after differentiating into dermis fibroblasts; RT-PCR identified collagen type I mRNA expression in differentiated cells; radioimmunoassay detected the secretion of interleukin-6 (IL-6) and interleukin-8 (IL-8) (up to 115.06 pg/mL and 0.84 ng/mL, respectively). Further in vivo implanting BMSCs with scaffold material shortened skin wound repair significantly. In one word, autogenic BMSCs have the potential to differentiate into epidermal cells and fibroblasts in vitro, and show clinical feasibility acting as epidermis-like and dermis-like seed cells in skin engineering.  相似文献   

15.
选用Wistar大鼠分离骨髓间充质干细胞作体外培养及鉴定其表达抗原CD44、CDw90;采用10μmol/L 5-氮胞苷诱导第1代的骨髓间充质干细胞,于诱导后2、4周进行免疫细胞化学反应检测α-横纹肌肌动蛋白、肌钙蛋白T。证实体外培养的第1代骨髓间充质干细胞经5-氮胞苷诱导可分化为心肌样细胞,为指导体外诱导的心肌细胞应用于。临床提供一定的理论依据和技术手段。  相似文献   

16.
    
BACKGROUND: Efficient gene transfer to bone marrow derived mesenchymal stem cells (MSC) would provide an important opportunity to express potent anticancer agents in the tumour microenvironment because of their contribution to the tumour stroma. METHODS: HIV-based lentiviral vectors were pseudotyped with four different envelope proteins; amphotropic murine leukaemia virus (ampho), murine leukaemia virus (10A1), feline endogenous virus (RD114), and the vesicular stomatitis virus glycoprotein (VSVG). These pseudotypes were examined for transduction efficiency in human bone marrow derived MSC. The effect of lentiviral expression of truncated soluble vascular endothelial growth factor decoy receptor (tsFlk-1) in MSC on growth of Raji cells was determined, both in vitro and in vivo. RESULTS: All lentiviral vectors produced significant levels of transduction at an multiplicity of infection (MOI) of 1, those bearing the RD114 envelope glycoprotein consistently produced higher transduction levels (mean 70 +/- 6%) compared with the other pseudotyped lentiviral vectors, although there was significant inter-donor variation. Stable transgene expression was achieved after multiple rounds of transduction with VSVG-pseudotyped particles, without alteration in the differentiative capacity of transduced cells. Co-injection of MSC stably expressing tsFlk-1 with Raji Burkitt's lymphoma cells significantly impaired subcutaneous tumour growth in immunodeficient mice when compared to controls where either unmanipulated MSC or GFP-expressing MSC were used. CONCLUSIONS: Human MSC are easily transduced by pseudotyped lentiviral particles but there is inter-donor variation in transduction efficiency. Gene-modified MSC expressing a gene of therapeutic potential can moderate growth of haematological malignancies.  相似文献   

17.
    
ObjectivesTo clarify the possible role and mechanism of Cathepsin K (CTSK) in alveolar bone regeneration mediated by jaw bone marrow mesenchymal stem cells (JBMMSC).Materials and MethodsTooth extraction models of Ctsk knockout mice (Ctsk ‐/‐) and their wildtype (WT) littermates were used to investigate the effect of CTSK on alveolar bone regeneration. The influences of deletion or inhibition of CTSK by odanacatib (ODN) on proliferation and osteogenic differentiation of JBMMSC were assessed by CCK‐8, Western blot and alizarin red staining. To explore the differently expressed genes, RNA from WT and Ctsk‐/‐ JBMMSC was sent to RNA‐seq. ECAR, glucose consumption and lactate production were measured to identify the effect of Ctsk deficiency or inhibition on glycolysis. At last, we explored whether Ctsk deficiency or inhibition promoted JBMMSC proliferation and osteogenic differentiation through glycolysis.ResultsWe found out that Ctsk knockout could promote alveolar bone regeneration in vivo. In vitro, we confirmed that both Ctsk knockout and inhibition by ODN could promote proliferation of JBMMSC, up‐regulate expression of Runx2 and ALP, and enhance matrix mineralization. RNA‐seq results showed that coding genes of key enzymes in glycolysis were significantly up‐regulated in Ctsk‐/‐ JBMMSC, and Ctsk deficiency or inhibition could promote glycolysis in JBMMSC. After blocking glycolysis by 3PO, the effect of Ctsk deficiency or inhibition on JBMMSC’s regeneration was blocked subsequently.ConclusionsOur findings revealed that Ctsk knockout or inhibition could promote alveolar bone regeneration by enhancing JBMMSC regeneration via glycolysis. These results shed new lights on the regulatory mechanism of CTSK on bone regeneration.  相似文献   

18.
19.
20.
    
Background and Aims: Decellularized liver matrix (DLM) hold great potential for reconstructing functional hepatic-like tissue (HLT) based on reseeding of hepatocytes or stem cells, but the shortage of liver donors is still an obstacle for potential application. Therefore, an appropriate alternative scaffold is needed to expand the donor pool. In this study, we explored the effectiveness of decellularized spleen matrix (DSM) for culturing of bone marrow mesenchymal stem cells (BMSCs), and promoting differentiation into hepatic-like cells.

Methods: Rats' spleen were harvested for DSM preparation by freezing/thawing and perfusion procedure. Then the mesenchymal stem cells derived from rat bone marrow were reseeded into DSM for dynamic culture and hepatic differentiation by a defined induction protocol.

Results: The research found that DSM preserved a 3-dimensional porous architecture, with native extracellular matrix and vascular network which was similar to DLM. The reseeded BMSCs in DSM differentiated into functional hepatocyte-like cells, evidenced by cytomorphology change, expression of hepatic-associated genes and protein markers, glycogen storage, and indocyanine green uptake. The albumin production (2.74±0.42 vs. 2.07±0.28 pg/cell/day) and urea concentration (75.92±15.64 vs. 52.07±11.46 pg/cell/day) in DSM group were remarkably higher than tissue culture flasks (TCF) group over the same differentiation period, P< 0.05.

Conclusion: This present study demonstrated that DSM might have considerable potential in fabricating hepatic-like tissue, particularly because it can facilitate hepatic differentiation of BMSCs which exhibited higher level and more stable functions.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号