首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
About 5 per cent of follicular lymphoma (FL) cases are double‐hit (DH) lymphomas. Double‐hit follicular lymphoma (DHFL) cell lines can improve our understanding and drug development on FL. But there are only few DHFL cell lines. Here, we established a new MYC/BCL2 DHFL cell line, FL‐SJC. The cells were obtained from the hydrothorax of a patient with MYC/BCL2 DHFL and cultured for 140 passages in vitro. FL‐SJC cells demonstrated CD19++, CD20+, CD22++, HLA‐DR+, CD10+, CD38+, Lambda+ CD23, CD5 and Kappa. The chromosome karyotypic analysis confirmed the co‐existence of t(8;22)(q24;q11) and t(14;18)(q32;q21), as well as additional abnormalities involving chromosomes 2 and 3. Fluorescence in situ hybridization analysis (FISH) showed IGH/BCL2 fusion gene and the MYC rearrangement. In addition, the FL‐SJC cells displayed KMT2D/MLL2 and CREBBP gene mutations. After subcutaneous inoculation of FL‐SJC cells, the SCID mice developed solid tumour masses within 6‐8 weeks. FL‐SJC cells were proven to be free of Epstein‐Barr (EB) virus infection and be multidrug‐resistant. In a conclusion, the FL‐SJC cell line has been identified as a novel MYC/BCL2 double‐hit follicular lymphoma that can be used as a potentially available tool for the clinical and basic research, together with the drug development for MYC/BCL2 DHFL.  相似文献   

2.
3.
SMYD2 is a lysine methyltransferase that catalyzes the monomethylation of several protein substrates including p53. SMYD2 is overexpressed in a significant percentage of esophageal squamous primary carcinomas, and that overexpression correlates with poor patient survival. However, the mechanism(s) by which SMYD2 promotes oncogenesis is not understood. A small molecule probe for SMYD2 would allow for the pharmacological dissection of this biology. In this report, we disclose LLY-507, a cell-active, potent small molecule inhibitor of SMYD2. LLY-507 is >100-fold selective for SMYD2 over a broad range of methyltransferase and non-methyltransferase targets. A 1.63-Å resolution crystal structure of SMYD2 in complex with LLY-507 shows the inhibitor binding in the substrate peptide binding pocket. LLY-507 is active in cells as measured by reduction of SMYD2-induced monomethylation of p53 Lys370 at submicromolar concentrations. We used LLY-507 to further test other potential roles of SMYD2. Mass spectrometry-based proteomics showed that cellular global histone methylation levels were not significantly affected by SMYD2 inhibition with LLY-507, and subcellular fractionation studies indicate that SMYD2 is primarily cytoplasmic, suggesting that SMYD2 targets a very small subset of histones at specific chromatin loci and/or non-histone substrates. Breast and liver cancers were identified through in silico data mining as tumor types that display amplification and/or overexpression of SMYD2. LLY-507 inhibited the proliferation of several esophageal, liver, and breast cancer cell lines in a dose-dependent manner. These findings suggest that LLY-507 serves as a valuable chemical probe to aid in the dissection of SMYD2 function in cancer and other biological processes.  相似文献   

4.
5.
6.
7.
8.
Wang L  Li L  Zhang H  Luo X  Dai J  Zhou S  Gu J  Zhu J  Atadja P  Lu C  Li E  Zhao K 《The Journal of biological chemistry》2011,286(44):38725-38737
SMYD2 belongs to a subfamily of histone lysine methyltransferase and was recently identified to methylate tumor suppressor p53 and Rb. Here we report that SMYD2 prefers to methylate p53 Lys-370 over histone substrates in vitro. Consistently, the level of endogenous p53 Lys-370 monomethylation is significantly elevated when SMYD2 is overexpressed in vivo. We have solved the high resolution crystal structures of the full-length SMYD2 protein in binary complex with its cofactor S-adenosylmethionine and in ternary complex with cofactor product S-adenosylhomocysteine and p53 substrate peptide (residues 368-375), respectively. p53 peptide binds to a deep pocket of the interface between catalytic SET(1-282) and C-terminal domain (CTD) with an unprecedented U-shaped conformation. Subtle conformational change exists around the p53 binding site between the binary and ternary structures, in particular the tetratricopeptide repeat motif of the CTD. In addition, a unique EDEE motif between the loop of anti-parallel β7 and β8 sheets of the SET core not only interacts with p53 substrate but also forms a hydrogen bond network with residues from CTD. These observations suggest that the tetratricopeptide repeat and EDEE motif may play an important role in determining p53 substrate binding specificity. This is further verified by the findings that deletion of the CTD domain drastically reduces the methylation activity of SMYD2 to p53 protein. Meanwhile, mutation of EDEE residues impairs both the binding and the enzymatic activity of SMYD2 to p53 Lys-370. These data together reveal the molecular basis of SMYD2 in specifically recognizing and regulating functions of p53 tumor suppressor through Lys-370 monomethylation.  相似文献   

9.

The aim of this study is to assess the expression levels of SMYD2 in human tissue samples and cells of colon cancer, and further explore the potential mechanisms of SMYD2 in colon cancer progression. Quantitative PCR and Immunohistochemical (IHC) assays were performed to detect SMYD2 expression in 76 tissue samples of colon cancer tissues and the corresponding normal tissues. The potential correlations between SMYD2 expression levels and clinical pathological features were assessed. We further detected the effects of SMYD2 on the proliferation, invasion and apoptosis of colon cancer cells and on ERBB2/FUT4 signaling pathway through Brdu assay, transwell assay and flow cytometry assay, respectively. The potential effects of SMYD2 on tumor growth were explored using an animal model. We demonstrated the possible involvement of SMYD2 in the progression of colon cancer. We found the high expression of SMYD2 in human colon cancer tissues and cells, and found the correlations between SMYD2 expression and the clinicopathological features including vascular invasion (P?=?0.007*), TNM stage (P?=?0.016*) and lymph node metastasis (P?=?0.011*), of patients with colon cancer. Our data further confirmed that SMYD2 affects cell proliferation, invasion, and apoptosis of colon cancer cells via the regulation of ERBB2/FUT4 signaling pathway. We also demonstrated SMYD2 contributed to tumor growth of colon cancer cells in vivo. We investigated the potential involvement of SMYD2 in the progression of colon, and therefore confirmed SMYD2 as a possible therapeutic target for colon cancer.

  相似文献   

10.
Xanthatin (Xa) is a bicyclic sesquiterpene lactone identified from the plant Xanthium L. with impressive antitumor activity, but the role of Xa in non-small cell lung cancer (NSCLC) is not known. Here we found that Xa inhibits proliferation, migration, invasion and induces apoptosis in NSCLC cells. RNA sequencing and Gene set enrichment analysis revealed that Xa significantly activates p53 pathway and suppresses E2F targets, G2M checkpoint and MYC targets in A549 cells. Among these changed genes, the down-regulated gene BARD1 triggered by Xa was identified as a candidate involved in Xa’s antitumor effect because of its vital role in homologous recombination (HR). Further studies demonstrated that Xa inhibits HR through the BARD1/BRCA1/RAD51 axis, which enhances cell sensitivity to cisplatin. Mechanistic studies showed that Xa inhibits BARD1 through the JAK2/STAT4 pathway. Our study revealed that Xa is a promising drug to treat NSCLC, especially in combination with conventional chemotherapy.  相似文献   

11.
12.
Histone modifications (methylation and demethylation) regulate gene expression and play a role in cell proliferation and differentiation by their actions on chromatin structure. In this context, we studied the temporal expression profiles of genes acting on histone methylation and demethylation during skeletal muscle proliferation and differentiation. Quantitative real-time PCR was used to quantify the mRNA levels of CARM1 , JARID1A , JMJD2A , LSD1 , PRMT2 , PRMT5 , SMYD1 , SMYD2 , SMYD3 , SETDB1 , Suv39h2 and SUZ12 in foetal skeletal muscle. Our results showed that CARM1 , JARID1A , JMJD2A , SMYD1 and SMYD2 were differentially expressed in embryonic muscles of 33 days post-conception (dpc), 65 dpc and 90 dpc. These 12 genes were mapped to porcine chromosomes (SSC) 2q21–24, 5q25, 6q35, 6q12–21, 6p15, 7q21, 3q21–27, 9q26, 10p16, 4q15–16, 10q14–16 and 12p12 respectively. Taking into account the reported QTL mapping results, gene expression analysis and radiation hybrid mapping results, these results suggest that five genes ( CARM1 , JARID1A , JMJD2A , SMYD1 and SMYD2 ) could be good candidate genes for growth and backfat thickness traits.  相似文献   

13.
CD37, CD53, and R2 leukocyte surface antigens are members of a novel family of structurally related proteins. They all have four transmembrane-spanning domains with a single major extracellular loop. The CD37 is expressed on B cells and on a sub-population of T cells. The CD53 is known as a panleukocyte marker. The R2 protein is an activation antigen of T cells. The CD37, CD53, and R2 genes were assigned with the help of human/rodent somatic cell hybrids and human-specific probes to human chromosomes 19, 1, and 11, respectively. For the regional assignment, various deletion hybrids were used to map CD37 to 19p13-q13.4, CD53 to 1p12-p31, and R2 to 11p12.  相似文献   

14.
15.
16.
17.
18.
Myelocytomatosis oncogene (c‐MYC) is a well‐known nuclear oncoprotein having multiple functions in cell proliferation, apoptosis and cellular transformation. Chromosomal modification is also important to the differentiation and growth of stem cells. Histone deacethylase (HDAC) and polycomb group (PcG) family genes are well‐known chromosomal modification genes. The aim of this study was to elucidate the role of c‐MYC in the expression of chromosomal modification via the HDAC family genes in human mesenchymal stem cells (hMSCs). To achieve this goal, c‐MYC expression was modified by gene knockdown and overexpression via lentivirus vector. Using the modified c‐MYC expression, our study was focused on cell proliferation, differentiation and cell cycle. Furthermore, the relationship of c‐MYC with HDAC2 and PcG genes was also examined. The cell proliferation and differentiation were checked and shown to be dramatically decreased in c‐MYC knocked‐down human umbilical cord blood‐derived MSCs, whereas they were increased in c‐MYC overexpressing cells. Similarly, RT‐PCR and Western blotting results revealed that HDAC2 expression was decreased in c‐MYC knocked‐down and increased in c‐MYC overexpressing hMSCs. Database indicates presence of c‐MYC binding motif in HDAC2 promoter region, which was confirmed by chromatin immunoprecipitation assay. The influence of c‐MYC and HDAC2 on PcG expression was confirmed. This might indicate the regulatory role of c‐MYC over HDAC2 and PcG genes. c‐MYCs’ regulatory role over HDAC2 was also confirmed in human adipose tissue‐derived MSCs and bone‐marrow derived MSCs. From this finding, it can be concluded that c‐MYC plays a vital role in cell proliferation and differentiation via chromosomal modification.  相似文献   

19.
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. Prognosis is often unfavorable. In this study, the effects of microRNA-802 (miR-802) on HCC progression were assessed in vivo and in vitro. miR-802 was found to be significantly upregulated in HCC tumor tissue compared to paired adjacent nontumor tissue. In vitro, transfection with a miR-802 mimic accelerated SMMC-7721 cellular proliferation, increased accumulation of the cell-cycle S-phase cell populations, as well as cell migration. In vivo injection of a miR-802 agomir promoted HCC proliferation in nude mice. Targets of miR-802 were predicted by miRWalk, miRanda, RNA22, and Targetscan. By luciferase reporter assay RUNX3 was identified as a direct target of miR-802. As judged by western blot analysis, RUNX3 was upregulated when miR-802 was inhibited. These data demonstrate increased miR-802 expression in patients with HCC and that miR-802 overexpression promotes tumor cell growth, in a RUNX3-dependent manner.  相似文献   

20.
Lung cancer is a complex spectrum of diseases characterized by extensive genomic instability, which can be detected among both histological subtypes and different foci within a tumor. Conventional and cutting edge investigative technologies have uncovered scores of genomic changes in individual specimens that have been used to characterize specific molecular subtypes. Oncogenes with predominant roles in lung cancer include EGFR, MYC, RAS family members, PIK3CA, NKX2-1 and ALK; tumor suppressor genes include TP53, RB1, CDKN2, and a cluster of genes mapped at 3p. MicroRNA regulators also have been linked to lung cancer. The functional role of the recurrent genomic changes in lung tumors has been explored, which has led to a better understanding of cell growth, differentiation and apoptotic pathways. Additionally, this knowledge has supported the development of novel therapeutics and translational tools for selection of patients for personalized therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号