首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the dispersed acinar cells of the submucosal nasal gland in the guinea pig, intracellular Na+ concentration ([Na+]i) was measured with a microfluorimetric imaging method and the cytosolic indicator dye, sodium-binding benzofuran isophthalate, under HCO3?-free conditions. In the unstimulated condition, the [Na+]i was averaged to 12.8 ± 5.2 mM. Addition of 100 μM ouabain or removal of external K+ caused an increase in [Na+]i. Replacement of external Cl? with NO3? or addition of 0.5 mM furosemide reversibly decreased the [Na+]i. The recovery process from the reduced [Na+]i was inhibited by removal of either K+ or Cl? in the bath solution. These findings indicate the presence of a continuous influx of Na+ coupled with K+ and Cl? movement. Application of acetylcholine (ACh, 1 μM) caused an increase in [Na+]i by about 15–20 mM, which was completely inhibited by addition of 10 μM atropine. Increased cytosolic Na+ induced by ACh was extruded by the Na+-K+ pump. Removal of external Cl? and addition of 50 μM dimethylamiloride inhibited ACh-induced increase in [Na+]i by about 66% and 19%, respectively. In both unstimulated and stimulated state, Na+-K+ pump, Na-K-Cl cotransport, and Na+-H+ exchange play a critical role in maintaining intracellular electrolyte environment and in controlling a continuous secretion of nasal fluids. © 1995 Wiley-Liss, Inc.  相似文献   

2.
The importance of astrocytic K+ uptake for extracellular K+ ([K+]e) clearance during neuronal stimulation or pathophysiological conditions is increasingly acknowledged. It occurs by preferential stimulation of the astrocytic Na+,K+-ATPase, which has higher Km and Vmax values than its neuronal counterpart, at more highly increased [K+]e with additional support of the cotransporter NKCC1. Triggered by a recent DiNuzzo et al. paper, we used administration of the glycogenolysis inhibitor DAB to primary cultures of mouse astrocytes to determine whether K+ uptake required K+-stimulated glycogenolysis. KCl was increased by either 5 mM (stimulating only the Na+,K+-ATPase) or 10 mM (stimulating both transporters) in glucose-containing saline media prepared to become iso-osmotic after the addition. DAB completely inhibited both uptakes, the Na+,K+-ATPase-mediated by preventing Na+ uptake for stimulation of its intracellular Na+-activated site, and the NKCC1-mediated uptake by inhibition of depolarization- and L-channel-mediated Ca2+ uptake. Drugs inhibiting the signaling pathways involved in either of these processes also abolished K+ uptake. Assuming similar in vivo characteristics, partly supported by literature data, K+-stimulated astrocytic K+ uptake must discontinue after normalization of extracellular K+. This will allow Kir1.4-mediated release and reuptake by the less powerful neuronal Na+,K+-ATPase.  相似文献   

3.
The effect of changing [K+], [Na+] and [Cl?] in nutrient solution was studied in bullfrog antrum with and without HCO3? in nutrient. In 25 mM HCO3? (95% O2/5% CO2) and in zero HCO3? (100% O2), nutrient pH was maintained at 7.3. Changing from 4 to 40 mM K+ or from 81 to 8.1 mM Cl? gave a decrease 10 min later in transmucosal PD (nutrient became more negative) — a normal response. These responses were less in zero than in 25 mM HCO3?. A decrease from 102 to 8 mM Na+ decreased PD (anomalous response of electrogenic NaCl symport). This effect was attenuated or eliminated in zero HCO3?. In contrast, change from 4 to 40 mM K+ gave initial anomalous PD response and change from 102 to 8 mM Na+, initial normal PD response with either zero or 25 mM HCO3?. Both responses were associated with (Na+ + K+)-ATPase pump and were greater in zero than in 25 mM HCO3?. Initial PD increases in zero HCO3? are explained as due to increase in the resistance of passive conductance and/or NaCl symport pathways. Thus, removal of HCO3? modifies conductance pathways of nutrient membrane.  相似文献   

4.
Epileptic foci are associated with locally reduced taurine (2-aminoethanesulfonic acid) concentration and Na+, K+-ATPase (EC 3.6.1.3) specific activity. Topically applied and intraperitoneally administered taurine can prevent the development and/or spread of foci in many animal models. Taurine has been implicated as a possible cytosolic modulator of monovalent ion distribution, cytosolic “free” calcium activity, and neuronal excitability. Taurine may act in part by modulating Na+, K+-ATPase activity of neuronal and glial cells. We characterized the requirements for in vitro modulation of Na+, K+-ATPase by taurine. Normal whole brain homogenate Na+, K+-ATPase activity is 5.1 ± 0.4 (4) μmol Pi± h?1± mg?1 Lowry protein. Partial purification of the plasma membrane fraction to remove cytosolic proteins and extrinsic proteins and to uncouple cholinergic receptors yields a membrane-bound Na+, K+-ATPase activity of 204.6 ± 5.8 (4) mol Pi± h?1± mg?1 Lowry protein. Taurine activates the Na+, K+-ATPase at all levels of purification. The concentration dependence of activation follows normal saturation kinetics (K1/2= 39 mM taurine, activation maximum =+87%). The activation exhibits chemical specificity among the taurine analogues and metabolites: taurine = isethionic acid > hypotaurine > no activation =β-alanine = methionine = choline = leucine. Taurine can act as an endogenous activator/modulator of Na+, K+-ATPase. Its action is mediated by a membrane-bound protein.  相似文献   

5.
Neuronal excitation leads to an increase of the extracellular K+ concentration ([K+]o) in brain. This increase has at least two energy-consuming consequences: (1) a depolarization-mediated change in intracellular pH (pHi) in astrocytes due to depolarization-mediated increased activity of the acid-extruding Na+/bicarbonate transporter NBCe1 (driven by secondary active transport, supported by ion gradients established by the Na+, K+-ATPase); and (2) activation of cellular reuptake of K+ mediated by the Na+, K+-ATPase in both neurons and astrocytes. Astrocytic, but not neuronal increase in NBCe1 activity and pHi is also seen after chronic treatment with either of the two anti-bipolar drugs carbamazepine or valproic acid. The third ‘classical’ anti-bipolar drug, ‘lithium’ increases astrocytic pHi by a different mechanism (stimulation of the acid extruding Na+/H+ exchanger NHE1). The acid extruder fluxes, which depend upon the change in pHi per time unit (ΔpHi/Δt) and intracellular buffering power, have not been established in most of these situations. Therefore their stimulatory effects on energy metabolism has not been quantitated. This has been done in the present study in cultured mouse astrocytes. pHi was determined using the fluorescent pH-sensitive indicator BCECF–AM and an Olympus IX71 live cell imaging fluorescence microscope. Molar acid extrusion fluxes (indicating transporter activity) were determined as pHi changes/min during recovery after acid-loading with NH3/NH4 +, NBCe1 mRNA and protein expression in the cultured cells by, respectively RT-PCR and Western blotting. Drug-induced up-regulation of acid extrusion flux was slow and less than physiologically seen after increase in K+ concentration. Energetically, K+ uptake is much costlier than NBCe1 activity.  相似文献   

6.
Abstract: The effect of endothelins (ET-1 and ET-3) on 86Rb+ uptake as a measure of K+ uptake was investigated in cultured rat brain capillary endothelium. ET-1 or ET-3 dose-dependently enhanced K+ uptake (EC50 = 0.60 ± 0.15 and 21.5 ± 4.1 nM, respectively), which was inhibited by the selective ETA receptor antagonist BQ 123 (cyclo-d -Trp-d -Asp-Pro-d -Val-Leu). Neither the selective ETB agonists IRL 1620 [N-succinyl-(Glu9,-Ala11,15)-ET-1] and sarafotoxin S6c, nor the ETB receptor antagonist IRL 1038 [(Cys11,Cys15)-ET-1] had any effect on K+ uptake. Ouabain (inhibitor of Na+,K+-ATPase) and bumetanide (inhibitor of Na+-K+-Cl? cotransport) reduced (up to 40% and up to 70%, respectively) the ET-1-stimulated K+ uptake. Complete inhibition was seen with both agents. Phorbol 12-myristate 13-acetate (PMA), activator of protein kinase C (PKC), stimulated Na+,K+-ATPase and Na+-K+-Cl? cotransport. ET-1-but not PMA-stimulated K+ uptake was inhibited by 5-(N-ethyl-N-isopropyl)amiloride (inhibitor of Na+/H+ exchange system), suggesting a linkage of Na+/H+ exchange with ET-1-stimulated Na+,K+-ATPase and Na+-K+-Cl? cotransport activity that is not mediated by PKC.  相似文献   

7.
Effects of ammonia on astrocytes play a major role in hepatic encephalopathy, acute liver failure and other diseases caused by increased arterial ammonia concentrations (e.g., inborn errors of metabolism, drug or mushroom poisoning). There is a direct correlation between arterial ammonia concentration, brain ammonia level and disease severity. However, the pathophysiology of hyperammonemic diseases is disputed. One long recognized factor is that increased brain ammonia triggers its own detoxification by glutamine formation from glutamate. This is an astrocytic process due to the selective expression of the glutamine synthetase in astrocytes. A possible deleterious effect of the resulting increase in glutamine concentration has repeatedly been discussed and is supported by improvement of some pathologic effects by GS inhibition. However, this procedure also inhibits a large part of astrocytic energy metabolism and may prevent astrocytes from responding to pathogenic factors. A decrease of the already low glutamate concentration in astrocytes due to increased synthesis of glutamine inhibits the malate–aspartate shuttle and energy metabolism. A more recently described pathogenic factor is the resemblance between NH4 + and K+ in their effects on the Na+,K+-ATPase and the Na+,K+, 2 Cl? and water transporter NKCC1. Stimulation of the Na+,K+-ATPase driven NKCC1 in both astrocytes and endothelial cells is essential for the development of brain edema. Na+,K+-ATPase stimulation also activates production of endogenous ouabains. This leads to oxidative and nitrosative damage and sensitizes NKCC1. Administration of ouabain antagonists may accordingly have therapeutic potential in hyperammonemic diseases.  相似文献   

8.
The effect of various potassium concentrations (ranging from 1.4 mM to 30 mM K+) in modified Tyrode's medium on the culture of mouse zygotes obtained after in vitro fertilization to the blastocyst stage was examined. A clear dose-dependent negative effect of increasing K+ concentrations on the preimplantation embryonic development in vitro was found. We have previously shown that significantly more two-cell embryos reach the blastocyst stage when cultured during the second day postinsemination in medium supplemented with taurine. Because taurine, an amino acid that abounds in the reproductive tract, has been reported to inhibit the enzyme Na+-K+-adenosine triphosphatase (Na+-K+-AT-Pase), we used two other conditions known to inhibit the Na+-K+-ATPase to study their effect on mouse embryo development. Culturing embryos during a short period (the second day postinsemination) in low extracellular K+ concentrations (1.4 mM) or in medium supplemented with ouabain (50 μM) showed positive effects similar to those of culturing in medium with taurine (10 mM). This beneficial effect of ouabain was found in various K+ concentrations tested, including the high concentrations present in the oviduct. Although the effects of low K+ and taurine can possibly be ascribed to their other cellular effects, the effect of ouabain shows that inhibition of the Na+-K+-ATPase during the two-cell stage in the mouse is beneficial for further embryonic development to the blastocyst stage. © 1993 Wiley-Liss, Inc.  相似文献   

9.
Spermine activated Na+-K+-ATPase when the concentrations of K+ and ATP were low, whereas it inhibited K+-dependent and ouabain-inhibitable monophosphatase. The activating effect of sperimine was not due to the substitution for K+ or Na+. Excess K+ inhibited Na+-K+-ATPase partially, and reduced the spermine activation. When 1 mM ATP was used, spermine at higher concentrations inhibited Na+-K+-ATPase, and did not activate at all. It is suggested that the K+-sites essential to Na+-K+-ATPase and the K+-phosphatase co-exist at different places of the enzyme.  相似文献   

10.
This report describes K+ efflux, K+ and Ca2+ uptake responses to endothelins (ET-1 and ET-3) in cultured endothelium derived from capillaries of human brain (HBEC). ET-1 dose dependently increased K+ efflux, K+ and Ca2+ uptake in these cells. ET-1 stimulated K+ efflux occurred prior to that of K+ uptake. ET-3 was ineffective. The main contributor to the ET-1 induced K+ uptake was ouabain but not bumetanide-sensitive (Na+-K+-ATPase and Na+-K+-Cl cotransport activity, respectively). All tested paradigms of ET-1 effects in HBEC were inhibited by selective antagonist of ETA but not ETB receptors and inhibitors of phospholipase C and receptor-operated Ca2+ channels. Activation of protein kinase C (PKC) decreased whereas inhibition of PKC increased the ET-1 stimulated K+ efflux, K+ and Ca2+ uptake in HBEC. The results indicate that ET-1 affects the HBEC ionic transport systems through activation of ETA receptors linked to PLC and modulated by intracellular Ca2+ mobilization and PKC.  相似文献   

11.
Inastrocytes, as [K+]o was increased from 1.2 to 10 mM, [K+]i and [Cl]i were increased, whereas [Na+]i was decreased. As [K+]o was increased from 10 to 60 mM, intracellular concentration of these three ions showed no significant change. When [K+]o was increased from 60 to 122 mM, an increase in [K+]i and [Cl]i and a decrease in [Na+]i were observed.Inneurons, as [K+]o was increased from 1.2 to 2.8 mM, [Na+]i and [Cl]i were decreased, whereas [K+]i was increased. As [K+]o was increased from 2.8 to 30 mM, [K+]i, [Na+]i and [Cl]i showed no significant change. When [K+]o was increased from 30 to 122 mM, [K+]i and [Cl]i were increased, whereas [Na+]i was decreased. Inastrocytes, pHi increased when [K+]o was increased. Inneurons, there was a biphasic change in pHi. In lower [K+]o (1.2–2.8 mM) pHi decreased as [K+]o increased, whereas in higher [K+]o (2.8–122 mM) pHi was directly related to [K+]o. In bothastrocytes andneurons, changes in [K+]o did not affect the extracellular water content, whereas the intracellular water content increased as the [K+]o increased. Transmembrane potential (Em) as measured with Tl-204 was inversely related to [K+]o between 1.2 and 90 mM, a ten-fold increase in [K+]o depolarized the astrocytes by about 56 mV and the neurons about 52 mV. The Em values measured with Tl-204 were close to the potassium equilibrium potential (Ek) except those in neurons at lower [K+]o. However, they were not equal to the chloride equilibrium potential (ECl) at [K+]o lower than 30 mM in both astrocytes and neurons. Results of this study demonstrate that alteration of [K+]o produced different changes in [K+]i, [Na+]i, [Cl]i, and pHi in astrocytes and neurons. The data show that astrocytes can adapt to alterations in [K+]o, in such a way to maintain a more suitable environment for neurons.  相似文献   

12.
Abstract: The effect of hypoxia on Na+,K+-ATPase and Na+-K+-Cl? cotransport activity in cultured rat brain capillary endothelial cells (RBECs) was investigated by measuring 86Rb+ uptake as a tracer for K+. RBECs expressed both Na+,K+-ATPase and Na+-K+-Cl? cotransport activity (4.6 and 5.5 nmol/mg of protein/min, respectively). Hypoxia (24 h) decreased cellular ATP content by 43.5% and reduced Na+,K+-ATPase activity by 38.9%, whereas it significantly increased Na+-K+-Cl? cotransport activity by 49.1% in RBECs. To clarify further the mechanism responsible for these observations, the effect of oligomycin-induced ATP depletion on these ion transport systems was examined. Exposure of RBECs to oligomycin led to a time-dependent decrease of cellular ATP content (by ~65%) along with a complete inhibition of Na+,K+-ATPase and a coordinated increase of Na+-K+-Cl? cotransport activity (up to 100% above control values). Oligomycin augmentation of Na+-K+-Cl? cotransport activity was not observed in the presence of 2-deoxy-d -glucose (a competitive inhibitor of glucose transport and glycolysis) or in the absence of glucose. These results strongly suggest that under hypoxic conditions when Na+,K+-ATPase activity is reduced, RBECs have the ability to increase K+ uptake through Na+-K+-Cl? cotransport.  相似文献   

13.
  • 1.1. The (Na+ + K+)- and Na+-ATPases, both present in kidney microsomes of Sparus auratus L., have different activities and optimal assay conditions as, in the first of the two stocks of fish used (A), the spec. act. of the former is 51.7 μmol Pi mg prot−1 hr−1 at pH 7.5, 100 mM Na+, 10 mM K+, 17.5 mM Mg2+, 7.5 mM ATP and that of the latter is 6.5 μmol Pi mg prot−1 hr−1 at pH 6.5, 40 mM Na+, 4.0 mM Mg2+, 2.5 mM ATP.
  • 2.2. Ouabain and vanadate specifically inhibit the (Na+ + K+)-ATPase but not the Na+-ATPase that is preferentially inhibited by ethacrynic acid.
  • 3.3. While the (Na+ + K+)-ATPase is strictly specific for ATP and Na+, Na+-ATPase can be activated by various monovalent cations and, apart from ATP, hydrolyses CTP, though less efficiently.
  • 4.4. The second stock B, subjected to higher salinity than A, shows an acidic shifted Na+-ATPase optimal pH, opposed to the stability of that of the (Na+ + K+)-ATPase, a decreased (Na+ + K+)-ATPase and a strikingly depressed Na+-ATPase.
  • 5.5. The results are compared with literature data and discussed on the basis of the presumptive different roles as well as functional prevalence in various salinities of the two ATPases.
  相似文献   

14.
Side-by-side with inhibition of the Na+,K+-ATPase ouabain and other cardiotonic steroids (CTS) can affect cell functions by mechanisms other than regulation of the intracellular Na+ and K+ ratio ([Na+]i/[K+]i). Thus, we compared the doseand time-dependences of the effect of ouabain on intracellular [Na+]i/[K+]i ratio, Na+,K+-ATPase activity, and proliferation of human umbilical vein endothelial cells (HUVEC). Treatment of the cells with 1-3 nM ouabain for 24-72 h decreased the [Na+]i/[K+]i ratio and increased cell proliferation by 20-50%. We discovered that the same ouabain concentrations increased Na+,K+-ATPase activity by 25-30%, as measured by the rate of 86Rb+ influx. Higher ouabain concentrations inhibited Na+,K+-ATPase, increased [Na+]i/[K+]i ratio, suppressed cell growth, and caused cell death. When cells were treated with low ouabain concentrations for 48 or 72 h, a negative correlation between [Na+]i/[K+]i ratio and cell growth activation was observed. In cells treated with high ouabain concentrations for 24 h, the [Na+]i/[K+]i ratio correlated positively with proliferation inhibition. These data demonstrate that inhibition of HUVEC proliferation at high CTS concentrations correlates with dissipation of the Na+ and K+ concentration gradients, whereas cell growth stimulation by low CTS doses results from activation of Na+,K+-ATPase and decrease in the [Na+]i/[K+]i ratio.  相似文献   

15.
Effect of changing [K+], [Na+] and [Cl?] in nutrient solution on potential difference (PD) and resistance was studied in bullfrog antrum with and without nutrient HCO3? but with 95% O2/5% CO2 in both cases. In both cases, changing from 4 to 40 mM K+ gave about the same initial PD maximum (anomalous response) which was followed by a decrease below control level. Latter effect was much less with zero than with 25 mM HCO3?. Changing from 102 to 8 mM Na+ gave initial normal PD response about the same in both cases. However, 10 min later the change in PD with zero HCO3? was insignificant but with 25 mM HCO3? the PD decreased (anomalous response of electrogenic NaCl symport). PD maxima due to K+ and Na+ were largely related to (Na+ + K+)-ATPase pump. Changes in nutrient Cl? from 81 to 8.1 mM gave only a decrease in PD (normal response). Initial PD increases are explained by relative increases in resistance of simple conductance pathways and of parallel pathways of (Na+ + K+)-ATPase pump and Na+/Cl? symport. Removal of HCO3? and concurrent reduction of pH modify resistance of these pathways.  相似文献   

16.
Zinc ion in micromolar concentrations is an irreversible inhibitor of Electrophorus electricus electroplax microsomal (Na+-K+)-ATPase. The rate of inhibition is dependent on [ZnCl2] and the extent of inhibition varies with the ratio of ZnCl2 to microsomal protein. The same kinetics are observed for inhibition of K+ -p-nitrophenylphosphatase and steady-state levels of Na+ -dependent enzyme phosphorylation. The observations suggest that a Zn2+ -sensitive conformational restraint is important to both kinase and phosphatase activities. The fact that inhibition is irreversible has implications for models seeking to relate zinc effects in tissue to inhibition of (Na+-K+)-ATPase.  相似文献   

17.
Astrocytes fulfill a central role in regulating K+ and glutamate, both released by neurons into the extracellular space during activity. Glial glutamate uptake is a secondary active process that involves the influx of three Na+ ions and one proton and the efflux of one K+ ion. Thus, intracellular K+ concentration ([K+]i) is potentially influenced both by extracellular K+ concentration ([K+]o) fluctuations and glutamate transport in astrocytes. We evaluated the impact of these K+ ion movements on [K+]i in primary mouse astrocytes by microspectrofluorimetry. We established a new noninvasive and reliable approach to monitor and quantify [K+]i using the recently developed K+ sensitive fluorescent indicator Asante Potassium Green-1 (APG-1). An in situ calibration procedure enabled us to estimate the resting [K+]i at 133±1 mM. We first investigated the dependency of [K+]i levels on [K+]o. We found that [K+]i followed [K+]o changes nearly proportionally in the range 3–10 mM, which is consistent with previously reported microelectrode measurements of intracellular K+ concentration changes in astrocytes. We then found that glutamate superfusion caused a reversible drop of [K+]i that depended on the glutamate concentration with an apparent EC50 of 11.1±1.4 µM, corresponding to the affinity of astrocyte glutamate transporters. The amplitude of the [K+]i drop was found to be 2.3±0.1 mM for 200 µM glutamate applications. Overall, this study shows that the fluorescent K+ indicator APG-1 is a powerful new tool for addressing important questions regarding fine [K+]i regulation with excellent spatial resolution.  相似文献   

18.
Arginine vasopressin stimulates Na+-K+-ATPase activity located in the rat thick ascending limb of s'Henle loop. Mammalian hypothalamus appears to produce a factor capable of inhibiting Na+-K+-ATPase activity in a variety of tissues. The effect of a purified rat hypothalamic extract with and without AVP on rat renal Na+-K+-ATPase activity was evaluated by a cytochemical technique. The hypothalamic extract alone failed to affect basal Na+-K+-ATPase activity throughout renal segments after 10 min exposure. Na+-K+-ATPase activity stimulated by AVP (1–10 fmol l?1) for 10 min was inhibited by rat hypothalamic extract over the concentration range 10?7–10?3 U ml?1 in a dose-dependent manner. Complete inhibition of AVP-stimulated Na+-K+-ATPase activity occurred at a hypothalamic extract concentration of 10?3 U ml?1. Only Na+-K+-ATPase activity located in the renal medullary thick ascending limb was influenced by the rat hypothalamic extract.  相似文献   

19.
《Life sciences》1993,52(24):PL273-PL278
3H-ouabain binding and ouabain-inhibitable 86Rb+ (K+) uptake were investigated as a means to identify a third isoform of Na+, K+-ATPase in crude synaptosome preparations. The specific binding of low concentrations (10 nM and 1 uM) of 3H-ouabain, in crude synaptosome preparations, was markedly inhibited by K+ (0.5–5 mM). Accordingly, 86Rb+ (K+) uptake, in the presence of 5 mM K+ was not sensitive to inhibition by low concentrations (10−11–10−7 M) of ouabain. Higher concentrations (10−6–10−2.6 M) of ouabain resulted in a biphasic inhibition of K+ uptake, which distinguished the activities of the presumed alpha 2 and alpha 1 isozymes of Na+, K+-ATPase. Reduction of K+ (1.25 mM and 0.5 mM) in the incubation, resulted in the observation of a third component of ouabain- sensitive K+ uptake. This Na+, K+-ATPase activity, which was defined, pharmacologically, as very sensitive (VS) to ouabain, exhibited IC50s of 3.6 nM and 92 nM at 1.25 mM K+ and 0.5 mM K+, respectively. Inhibition of ouabain binding and VS-dependent K+ uptake, at a high, physiological cocentration (5 mM) of K+, suggests that VS may be an inactive isoform of brain Na+, K+-ATPase under resting conditions.  相似文献   

20.
A humoral ouabain-like plasma factor has been observed in patients with essential hypertension (EHT). In the present study, we hypothesized that this humoral factor might be responsible for the elevated cytosolic free calcium concentrations [Ca2+]i seen in these patients. Patients with mild to moderate EHT and their normotensive first degree blood relatives (NTBR) participated in the study. Platelet Na+, K+-ATPase activity was assayed in EHT patients and their NT first-degree relatives. To confirm the ouabain-like activity in plasma from EHT patients, control platelets were incubated with EHT and NTBR plasma and their Na+, K+-ATPase activity was measured. In addition, the effect of EHT plasma on platelet45Ca-uptake was studied. Thein vitro effects of ouabain (10 ΜM) on (i)45Ca-uptake and (ii) [Ca2+]i response in control platelets were also observed. A decreased Na+K+-ATPase activity (P< 0.05) was observed in platelet membranes from EHT patients. Incubation of control platelets with EHT plasma decreased their Na+, K+-ATPase activity (P< 0.01) and increased their45Ca-uptake (P< 0.05). C-18 Sep-Pak filtered hypertensive plasma extracts (containing the ouabain-like fraction) also decreased Na+, K+-ATPase activity (P< 001) in control platelet membranes.In vitro incubation of control platelets with ouabain increased45Ca-uptake (P< 005) and [Ca2+]i response (P< 0.05) in these platelets. Thus it appears that an ouabain-like factor in the EHT plasma may contribute to the elevated platelet [Ca2+]i observed in EHT patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号