首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Melanoma contributes a lot to skin cancer-related deaths. lncRNAs are implicated in various diseases, including melanoma. lncRNA NEAT1 is frequently dysregulated and can play important roles in multiple cancers. Nevertheless, little has been studied about the function of NEAT1 in melanoma progression. In our present research, we displayed NEAT1 was overexpressed in melanoma cells. A series of functional assays showed that overexpression of NEAT1 promoted the proliferation, migration, and invasion of melanoma cells. By contrast, NEAT1 knockdown obviously restrained melanoma cell progression. Mechanistically, it was revealed that NEAT1 could directly bind with miR-495-3p, which led to a negative effect on miR-495-3p levels. In addition, miR-495-3p was significantly decreased in melanoma cells. Furthermore, E2F3 was postulated as the target of miR-495-3p and overexpression of this miR could suppress the levels of E2F3. Meanwhile, it was exhibited that melanoma cell proliferation, migration, and invasion induced by E2F3 silence was abrogated by miR-495-3p. Moreover, an in vivo xenograft nude mice model was established using A375 cells and it was indicated that NEAT1 promoted melanoma progression in vivo via regulating the miR-495-3p/E2F3 axis. In conclusion, we suggest that NEAT1 exerts an oncogenic effect on melanoma development via inhibition of miR-495-3p and induction of E2F3. NEAT1 might serve as a crucial prognostic biomarker of melanoma.  相似文献   

2.
The biological function of long noncoding RNA NEAT1 has been revealed in a lot of diseases. Nevertheless, it is still not yet clear whether NEAT1 can modulate the process of myocardial ischemia–reperfusion injury (M-I/R). Here, we reported that NEAT1 was able to sponge miR-495-3p to contribute to M-I/R injury through activating mitogen-activated protein kinase 6 (MAPK6). First, elevated expression of NEAT1 was revealed in M-I/R injury mice, meanwhile, lactate dehydrogenase (LDH) and creatine kinase-muscle/brain (CK-MB) were also upregulated in the serum. Meanwhile, as previously reported, miR-495 serves as a tumor suppressor or an oncogenic miRNA in different types of cancer. Currently, we found miR-495-3p was remarkably reduced in M-I/R mice. Additionally, NEAT1 was significantly induced whereas miR-495-3p was greatly reduced by H2O2 treatment in H9C2 cells. Moreover, loss of NEAT1 in H9C2 cells could repress the viability and proliferation of cells. For another, overexpression of NEAT1 exhibited an opposite phenomenon. Furthermore, LDH release and caspase-3 activity were obviously triggered by upregulation of NEAT1 while suppressed by NEAT1 knockdown. miR-495-3p was indicated and validated as a target of NEAT1 using the analysis of bioinformatics. Interestingly, we observed that miR-495-3p mimics repressed tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-18 protein expression while their levels were enhanced by the inhibition of miR-495-3p in H9c2 cells. Subsequently, it was manifested that MAPK6 was a target of miR-495-3p, which could exert a lot in the NEAT1/miR-495-3p-mediated M-I/R injury. Overall, our results implied that NEAT1 contributed to M-I/R injury via the modulation of miR-495-3p and MAPK6.  相似文献   

3.
4.
Atherosclerosis has been recognized as a chronic inflammation process induced by lipid of the vessel wall. Oxidized low-density lipoprotein (ox-LDL) can drive atherosclerosis progression involving macrophages. Recently, long noncoding RNAs (lncRNAs) have been reported to play critical roles in atherosclerosis development. In our current study, we focused on the biological roles of lncRNA NEAT1 in atherosclerosis progress. Here, we found that ox-LDL was able to trigger human macrophages THP-1 cells, a human monocytic cell line, apoptosis in a dose-dependent and time-dependent course. In addition, we observed that NEAT1 was significantly increased in THP-1 cells incubated with ox-LDL and meanwhile miR-342-3p was greatly decreased. Then, NEAT1 was silenced by transfection of small interfering RNA (siRNA) of NEAT1 into THP-1 cells. As exhibited, CD36, oil-red staining levels, total cholesterol (TC), total cholesterol (TG) levels and THP-1 cell apoptosis were obviously repressed by knockdown of NEAT1. Furthermore, inhibition of NEAT1 contributed to the repression of inflammation in vitro. Interleukin 6 (IL-6), IL-1β, cyclooxygenase-2 (COX-2) and tumour necrosis factor-alpha (TNF-α) protein levels were remarkably depressed by NEAT1 siRNA in THP-1 cells. By using bioinformatics analysis, miR-342-3p was predicted as a downstream target of NEAT1 and the correlation between them was confirmed in our study. Moreover, overexpression of miR-342-3p could also greatly suppress inflammation response and lipid uptake in THP-1 cells. Knockdown of NEAT1 and miR-342-3p mimics inhibited lipid uptake in THP-1 cells. In conclusion, we implied that blockade of NEAT1 repressed inflammation response through modulating miR-342-3p in human macrophages THP-1 cells and NEAT1 may offer a promising strategy to treat atherosclerotic cardiovascular diseases.  相似文献   

5.
6.
7.
8.

Opa-interacting protein 5 antisense RNA 1 (OIP5-AS1), a long non-coding RNA (lncRNA), has been reported to link with the progression of some cancers. However, its biological functions and underlying molecular mechanisms in pancreatic cancer are largely unknown. The aim of this study was to investigate the role of lncRNA OIP5-AS1 in pancreatic cancer. Quantitative real-time PCR analysis revealed that OIP5-AS1 is highly expressed in pancreatic cancer tissues versus adjacent non-tumor tissues. In vitro functional assays showed that downregulation of OIP5-AS1 or overexpression of miR-342-3p inhibited the proliferation, decreased Ki67 expression, and induced cell cycle arrest in pancreatic cancer cells. The expression of cyclinD1, CDK4, and CDK6 was decreased by knockdown of OIP5-AS1. Moreover, we found that OIP5-AS1 acted as a miR-342-3p sponge to suppress its expression and function. Dual-luciferase assay confirmed the interaction of OIP5-AS1 and miR-342-3p and verified anterior gradient 2 (AGR2) as a direct target of miR-342-3p. Results showed that depletion of miR-342-3p abolished the inhibitory effects of OIP5-AS1 knockdown on pancreatic cancer cell growth. The expression of Ki67, AGR2, cyclinD1, CDK4, CDK6, p-AKT, and p-ERK1/2 was reversed by silencing of miR-342-3p in pancreatic cancer cells with OIP5-AS1 knockdown. Further, knockdown of OIP5-AS1 suppressed tumor growth in a xenograft mouse model of pancreatic cancer. OIP5-AS1 induced pancreatic cancer progression via activation of AKT and ERK signaling pathways. Therefore, we demonstrate that OIP5-AS1 functions as oncogene in pancreatic cancer and its downregulation inhibits pancreatic cancer growth by sponging miR-342-3p via targeting AGR2 through inhibiting AKT/ERK signaling pathway.

  相似文献   

9.
Growing evidence indicates long noncoding RNAs (lncRNAs) are significant regulators in the progression of various malignant tumors including colon cancer. Dysregulation of lncRNA LINC00261 has been identified in many cancers. Investigations on LINC00261 function have revealed that LINC00261 could act as a crucial tumor suppressor in various cancers. But, the biological involvement of LINC00261 in colon cancer is still barely known. Here, we found LINC00261 was reduced in colon cancer cells. Meanwhile, overexpressed LINC00261 repressed colon cancer cell viability and proliferation capacity. In addition, colony cancer cell colony formation was inhibited and apoptosis was enhanced by upregulation of LINC00261. Also, colon cancer cell migration and invasion both were restrained by LINC00261. miR-324-3p can exert important functions in several carcinomas, but its role in colon cancer is uninvestigated. In the current study, miR-324-3p was examined and miR-324-3p was greatly increased in colon cancer cells. Moreover, the association between miR-324-3p and LINC00261 was confirmed via performing RNA immunoprecipitation and RNA-pull-down experiments. In cancer biology, aberrant modulation of the Wnt signaling pathway remains a prevalent theme. Overexpression of LINC00261 obviously impaired colon cancer progression via inactivating the Wnt pathway. Furthermore, in the xenograft model assay, an increase of LINC00261 could suppress colon tumor growth via sponging miR-324-3p and inactivating the Wnt pathway. Overall, our results showed that LINC00261 repressed colon cancer progression via regulating miR-324-3p and the Wnt pathway. LINC00261 could be established as a novel therapeutic target for colon cancer.  相似文献   

10.
Accumulating evidence has indicated that long noncoding RNA NEAT1 exerts critical roles in cancers. So far, the detailed biological role and mechanisms of NEAT1, which are responsible for human gastric cancer (GC), are still largely unknown. Here, we observed that NEAT1 and STAT3 expressions were significantly upregulated in human GC cells including BGC823, SGC-7901, AGS, MGC803, and MKN28 cells compared with normal gastric epithelial cells GES-1, while miR-506 was downregulated. We inhibited NEAT1 and observed that NEAT1 inhibition was able to repress the growth, migration, and invasion of GC cells. Conversely, overexpression of NEAT1 exhibited an increased ability of GC progression in BGC823 and SGC-7901 cells. Bioinformatics analysis, dual luciferase reporter assays, RIP assays, and RNA pull-down tests validated the negative binding correlation between NEAT1 and miR-506. In addition, it was found that miR-506 can modulate the expression of NEAT1 in vitro. STAT3 was predicted as a messenger RNA (mRNA) target of miR-506, and miR-506 mimics can suppress STAT3 mRNA expression. Subsequently, it was observed that downregulation of NEAT1 can restrain GC development by decreasing STAT3, which can be reversed by miR-506 inhibitors. Therefore, it was hypothesized in our study that NEAT1 can be recognized as a competing endogenous RNA to modulate STAT3 by sponging miR-506 in GC. In conclusion, we implied that NEAT1 can serve as an important biomarker in GC diagnosis and treatment.  相似文献   

11.
12.
Aberrant microRNAs are widely identified in multiple cancers, including lung cancer. miR-135a-5p can function as a significant tumor regulator in diverse cancers via impacting multiple genes in oncogenic pathways. Nevertheless, the biological role of miR-135a-5p in lung cancer is poorly known. Here, we investigated its function in lung cancer. As exhibited, miR-135a-5p was elevated in lung cancer cells in contrast to BEAS-2B cells. Then, we inhibited miR-135a-5p expression by transfecting LV-anti-miR-135a-5p into lung cancer cells. As displayed, miR-135a-5p was obviously reduced in A549 and H1299 cells. Knockdown of miR-135a-5p repressed lung cancer cell growth and cell proliferation. Meanwhile, cell colony formation capacity was depressed, cell apoptosis was enhanced and cell cycle progression was blocked in G1 phase by inhibition of miR-135a-5p in vitro. Additionally, the migration and invasion of A549 and H1299 cells was strongly depressed by LV-anti-miR-135a-5p. For another, by using informatics analysis, lysyl oxidase-like 4 (LOXL4) was speculated as the downstream target of miR-135a-5p. We validated their direct correlation and moreover, overexpression of miR-135a-5p restrained LOXL4 levels in lung cancer cells. Subsequently, we proved that miR-135a-5p promoted lung cancer development via targeting LOXL4 by carrying out the in vivo assays. Taken these together, our study revealed miR-135a-5p might be indicated as a perspective for lung cancer via targeting LOXL4.  相似文献   

13.
14.
Docetaxel resistance remains one of the main problems in clinical treatment of metastatic prostate cancer (PCa). Previous studies identified differently expressed lncRNAs in docetaxel-resistant PCa cell lines, while the potential mechanisms were still unknown. In the present study, we found NEAT1 was expressed at high levels in docetaxel-resistant PCa clinical samples and related cell lines. When knockdown NEAT1, cell proliferation and invasion in docetaxel-resistant PCa cells in vitro and in vivo were downregulated. Our further researches explained that NEAT1 exerts oncogenic function in PCa by competitively ‘sponging’ both miR-34a-5p and miR-204-5p. Inhibition of miR-34a-5p or miR-204-5p expression mimics the docetaxel-resistant activity of NEAT1, whereas ectopic expression of miR-34a-5p or miR-204-5p attenuates the anti-drug function of NEAT1 in PCa cells. Besides, we also found ACSL4 is a target of both miR-34a-5p and miR-204-5p, and ACSL4 was also inhibited by miR-34a-5p and miR-204-5p. Moreover, suppression of miR-34a-5p or/and miR-204-5p greatly restrained the expression of ACSL4 upon NEAT1 overexpression. Joint expression of miR-34a-5p and miR-204a-5p synergistically decreased the expression of ASCL4, indicating miR-34a-5p and miR-204a-5p collaboratively inhibit the expression of ACSL4. Innovatively, we concluded that NEAT1 contributes to the docetaxel resistance by increasing ACSL4 via sponging miR-34a-5p and miR-204-5p in PCa cells.  相似文献   

15.
Pancreatic cancer is a serious solid malignant tumor worldwide. Increasing evidence has pointed out that abnormal expressions of long noncoding RNAs are involved in various tumors. Meanwhile, LINC00052 is reported as a famous tumor regulator in several cancers. Nevertheless, the biological role of LINC00052 in pancreatic cancer progression is still unknown. Our study was to explore the specific mechanism of LINC00052 in pancreatic cancer. First, we observed that the LINC00052 was obviously downregulated in several pancreatic cancer cell lines. Overexpression of LINC00052 greatly repressed AsPC-1 and SW1990 cell proliferation, triggered the apoptosis and prevented cell cycle in the G1 phase. For another, AsPC-1 and SW1990 cell migration and invasion capacity were also obviously repressed by LINC00052 upregulation. Moreover, miR-330-3p was elevated in pancreatic cancer cells and can function as a target of LINC00052 confirmed by luciferase reporter and RNA Immunoprecipitation (RIP) experiments. Inhibition of miR-330-3p could depress pancreatic cancer progression while overexpressed miR-330-3p exhibited an opposite process. Finally, our data indicated that the LINC00052 also remarkably suppressed pancreatic tumor growth via modulating miR-330-3p in vivo. To conclude, our study revealed that the LINC00052 might provide a new perspective for pancreatic cancer therapy.  相似文献   

16.
Diabetic nephropathy (DN) is a kind of microvascular complications of diabetes. Long noncoding RNAs (lnRNAs) can participate in the development of various diseases, including DN. However, the function of lncRNA NEAT1 is unclear. In our present study, we reported that NEAT1 was significantly increased in streptozotocin-induced DN rat models and high-glucose-induced mice mesangial cells. We observed that knockdown of NEAT1 greatly inhibited renal injury of DN rats. Meanwhile, downregulation of NEAT1-modulated extracellular matrix (ECM) proteins (ASK1, fibronectin, and TGF-β1) expression and epithelial–mesenchymal transition (EMT) proteins (E-cadherin and N-cadherin) in vitro. Previously, miR-27b-3p has been reported to be involved in diabetes. Here, miR-27b-3p was decreased in DN rats and high-glucose-induced mice mesangial cells. The direct correlation between NEAT1 and miR-27b-3p was validated using the dual-luciferase reporter assay and RNA immunoprecipitation experiments. In addition, zinc finger E-box binding homeobox 1 (ZEB1), which has been identified in the process of EMT clearly contributes to EMT progression. ZEB1 was predicted as a target of miR-27b-3p and overexpression of miR-27b-3p dramatically repressed ZEB1 expression. Therefore, our data implied the potential role of NEAT1 in the fibrogenesis and EMT in DN via targeting miR-27b-3p and ZEB1.  相似文献   

17.
NEAT1 is an important tumor oncogenic gene in various tumors. Nevertheless, its involvement remains poorly studied in cervical cancer. Our study explored the functional mechanism of NEAT1 in cervical cancer. NEAT1 level in several cervical cancer cells was quantified and we found NEAT1 was greatly upregulated in vitro. NEAT1 knockdown inhibited cervical cancer development through repressing cell proliferation, colony formation, capacity of migration, and invasion and also inducing the apoptosis. For another, microRNA (miR)-133a was downregulated in cervical cancer cells and NEAT1 negatively modulated miR-133a expression. Subsequently, we validated that miR-133a functioned as a potential target of NEAT1. Meanwhile, SOX4 is abnormally expressed in various cancers. SOX4 was able to act as a downstream target of miR-133a and silencing of SOX4 can restrain cervical cancer progression. In addition, in vivo assays were conducted to prove the role of NEAT1/miR-133a/SOX4 axis in cervical cancer. These findings implied that NEAT1 served as a competing endogenous RNA to sponge miR-133a and regulate SOX4 in cervical cancer pathogenesis. To sum up, it was implied that NEAT1/miR-133a/SOX4 axis was involved in cervical cancer development.  相似文献   

18.
Emerging evidence has shown that the long noncoding RNA urothelial carcinoma–associated 1 (UCA1) plays a tumor-promoting role in colorectal cancer, while miR-28-5p shows tumor-inhibitory activity in several tumor types. However, the mechanisms both of these in colon cancer progression are still unknown. In this work, the detailed roles and mechanisms of UCA1 and its target genes in colon cancer were studied. The results showed that UCA1 was upregulated in colon cancer tissues when compared with the adjacent nonhumorous tissues, as well as in the various colon cancer cell lines, but the expression of miR-28-5p showed an opposite trend. Furthermore, a high UCA1 level in colon cancer tissues is positively associated with the tumor size and advanced tumor stages. Functional assays revealed that both UCA1 knockdown and miR-28-5p overexpression could inhibit colon cancer cell growth and migration. Further mechanistic studies indicated that UCA1 knockdown played tumor suppressive roles in SW480 and HT116 cells through binding with miR-28-5p. We also, for the first time, identified HOXB3 as the target gene of miR-28-5p and that HOXB3 overexpression could mediate the functions of UCA1 in cell proliferation and migration of colon cancer cells. In conclusion, our data provided evidence for the regulatory network of UCA1/miR-28-5p/HOXB3 in colon cancer, suggesting that UCA1, miR-28-5p, and HOXB3 are the potential targets for colon cancer therapy.  相似文献   

19.
20.
Regulatory functions of circRNAs by targeting the micro RNA (miRNA)/mRNA axis have been increasingly found in oral squamous cell carcinoma (OSCC). CircRNA keratin 1 (CircKRT1) and miR-495-3p were dysregulated in OSCC. Programmed death ligand 1 (PDL1) was an important immunotherapeutic molecule in OSCC. Our objective was to explore whether circKRT1 could regulate cancer progression and immune evasion in OSCC by affecting the miR-495-3p/PDL1 axis. RNA expression was examined by quantitative real-time polymerase chain reaction. All protein levels were detected by western blot. OSCC cell growth was assessed by CCK-8 and colony formation assays. Cell migratory and invasive abilities were evaluated by transwell assay. CD8+ T-cell cytotoxicity was determined via lactate dehydrogenase assay. CD8+ T-cell percentage and apoptosis were analyzed by flow cytometry. Target screening was performed by Veen Diagram and RNA pull-down assay. Target binding was verified using dual-luciferase reporter and RNA immunoprecipitation assays. A xenograft in mice was conducted for in vivo experiment. CircKRT1 and PDL1 were highly expressed in OSCC tissues and cells. CircKRT1 knockdown repressed OSCC cell growth, migration, invasion, epithelial–mesenchymal transition, and CD8+ T-cell apoptosis, but enhanced CD8+ T cytotoxicity and percentage. The inhibitory effects of circKRT1 downregulation on OSCC progression and immune evasion were related to PDL1 expression inhibition. CircKRT1 sponged miR-495-3p and miR-495-3p targeted PDL1. OSCC progression and immune evasion were regulated by circKRT1 via the miR-495-3p/PDL1 axis. CircKRT1 also facilitated OSCC progression in vivo by regulating miR-495-3p and PDL1. This study clarified that circKRT1 worked as a miR-495-3p sponge to regulate PDL1, consequently affecting cancer progression and immune evasion in OSCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号