首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
肥胖已经成为威胁人类健康的全球性问题,棕色脂肪(Brown adipose tissue,BAT)及米色脂肪因其能够通过产热作用增加能量消耗这一特性,已成为一种备受关注的潜在肥胖治疗方法。近年来的研究发现M2型巨噬细胞(Alternatively activated macrophages,M2 type)能够促进BAT产热和白色脂肪(White adipose tissue,WAT)的棕色化(即米色脂肪的形成过程),但随后的一些研究却得到了相反的结论。到目前为止,M2型巨噬细胞是否参与促进WAT的棕色化过程仍是一个备受争议的话题。主要对M2型巨噬细胞、II型固有淋巴细胞(Type 2 Innate Lymphoid Cells,ILC2s)和嗜酸性粒细胞(Eosinophils)对BAT产热和WAT的棕色化的促进作用,以及M2型巨噬细胞不参与/抑制WAT棕色化这两个方面的研究状况做一综述。  相似文献   

2.
The paraneoplastic syndrome of cachexia is considered a degenerative chronic inflammatory disease, being deeply related to the increase of pro‐inflammatory factors, especially tumour necrosis factor alpha (TNF‐α). It is known that the adipose tissue is affected by cachexia and contributing with the secretion of pro‐inflammatory factors which reach the adjacent tissues and the circulation. The effect of pro‐inflammatory factors is balanced by the effect of anti‐inflammatory factors, such as interleukin 10 (IL‐10). The IL‐10/TNF‐α ratio has been recently postulated as a marker for the assessment of the degree of inflammation, which correlates with disease‐associated morbidity and mortality. In order to counteract inflammation in chronic disease, our group has currently adopted chronic endurance exercise in models of cancer cachexia and chronic heart failure. Since it is clear that white adipose tissue is strongly implicated in the secretion of both pro‐ and anti‐inflammatory factors in disease, we chose to address its contribution to cachexia‐related inflammation and the effect of endurance training on the capacity of cytokine expression and secretion by this tissue. Our results show an enhancement of IL‐10 adipose tissue content, and increased IL‐10/TNF‐α ratio induced by endurance training. The mechanisms are discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Cancer-induced muscle wasting, i.e. cachexia, is associated with different types of cancer such as pancreatic, colorectal, lung, liver, gastric and esophageal. Cachexia affects prognosis and survival in cancer, and it is estimated that it will be the ultimate cause of death for up to 30% of cancer patients. Musculoskeletal alterations are known hallmarks of cancer cachexia, with skeletal muscle atrophy and weakness as the most studied. Recent evidence has shed light on the presence of bone loss in cachectic patients, even in the absence of bone-metastatic disease. In particular, we and others have shown that muscle and bone communicate by exchanging paracrine and endocrine factors, known as myokines and osteokines. This review will focus on describing the role of the most studied myokines, such as myostatin, irisin, the muscle metabolite β-aminoisobutyric acid, BAIBA, and IL-6, and osteokines, including TGF-β, osteocalcin, sclerostin, RANKL, PTHrP, FGF23, and the lipid mediator, PGE2 during cancer-induced cachexia. The interplay of muscle and bone factors, together with tumor-derived soluble factors, characterizes a complex clinical scenario in which musculoskeletal alterations are amongst the most debilitating features. Understanding and targeting the “secretome” of cachectic patients will likely represent a promising strategy to preserve bone and muscle during cancer cachexia thereby enhancing recovery.  相似文献   

4.
5.
The ubiquitin-proteasome proteolytic pathway is of major importance in the breakdown of skeletal muscle proteins. The first step in this pathway is the covalent attachment of polyubiquitin chains to the targeted protein. Polyubiquitinylated proteins are then recognized and degraded by the 26S proteasome complex. In this review, we critically analyze recent findings in the regulation of ubiquitinylation of protein substrates and of their subsequent proteasome-dependent degradation in animal models of cancer cachexia. In particular, we discuss the influence of various mediators (anorexia, hormones, prostaglandins, cytokines, and proteolysis-inducing factor) in signaling the activation of ubiquitin-proteasome proteolysis in skeletal muscle. These findings have lead to new concepts that are starting to be used for preventing cachexia in cancer and other wasting diseases.  相似文献   

6.
7.
The adipose tissue (AT) is severely affected by cachexia, a paraneoplastic syndrome, which increases the morbidity and mortality of cancer. There is, however, a heterogeneous response to the condition, according to the AT depot. As plasma leptin concentration has been often reported to vary in cachexia, we have measured (species specific radioimmunoassay) the local concentration of leptin in three AT depots: retroperitoneal (RPAT), epididymal (EAT) and mesenteric (MES) of Walker 256 tumour-bearing rats. A reduced concentration of leptin (P<0.0001) was found in all the depots and in the plasma of the cachectic rats, compared with controls already from day 4 after tumour cell injection. The presence of a cell infiltrate was observed in all AT obtained from the tumour-bearing animals. Ultrastructural analysis, along with immunocytochemistry for RT1B (indicating the presence of MHCII) and using antibody against mononuclear phagocytes, showed the cells to be macrophages. The profile of TNF and PGE2 secretion by the infiltrate was investigated (commercial kits). There was increased production of both factors by the cells of all AT (P<0.05) compared with peritoneal macrophages obtained from the cachectic rats, while the cells isolated from MES showed the highest synthesis of TNF. The results suggest a possible modulation of the chronic locally produced TNF and PGE2 upon leptin synthesis by the AT of the cachectic rats.Financial support by FAPESP  相似文献   

8.
9.
Stephan Herzig 《The EMBO journal》2017,36(14):1999-2017
Adipose tissue represents a critical component in healthy energy homeostasis. It fulfills important roles in whole‐body lipid handling, serves as the body's major energy storage compartment and insulation barrier, and secretes numerous endocrine mediators such as adipokines or lipokines. As a consequence, dysfunction of these processes in adipose tissue compartments is tightly linked to severe metabolic disorders, including obesity, metabolic syndrome, lipodystrophy, and cachexia. While numerous studies have addressed causes and consequences of obesity‐related adipose tissue hypertrophy and hyperplasia for health, critical pathways and mechanisms in (involuntary) adipose tissue loss as well as its systemic metabolic consequences are far less understood. In this review, we discuss the current understanding of conditions of adipose tissue wasting and review microenvironmental determinants of adipocyte (dys)function in related pathophysiologies.  相似文献   

10.
Cancer cachexia is a multifaceted syndrome whose aetiology is extremely complex and is directly related to poor patient prognosis and survival. Changes in lipid metabolism in cancer cachexia result in marked reduction of total fat mass, increased lipolysis, total oxidation of fatty acids, hyperlipidaemia, hypertriglyceridaemia, and hypercholesterolaemia. These changes are believed to be induced by inflammatory mediators, such as tumour necrosis factor-α (TNF-α) and other factors.Attention has recently been drawn to the current theory that cachexia is a chronic inflammatory state, mainly caused by the host’s reaction to the tumour. Changes in expression of numerous inflammatory mediators, notably in white adipose tissue (WAT), may trigger several changes in WAT homeostasis. The inhibition of adipocyte differentiation by PPARγ is paralleled by the appearance of smaller adipocytes, which may partially account for the inhibitory effect of PPARγ on inflammatory gene expression. Furthermore, inflammatory modulation and/or inhibition seems to be dependent on the IKK/NF-κB pathway, suggesting that a possible interaction between NF-κB and PPARγ is required to modulate WAT inflammation induced by cancer cachexia.In this article, current literature on the possible mechanisms of NF-κB and PPARγ regulation of WAT cells during cancer cachexia are discussed. This review aims to assess the role of a possible interaction between NF-κB and PPARγ in the setting of cancer cachexia as well as its significant role as a potential modulator of chronic inflammation that could be explored therapeutically.  相似文献   

11.
Cancer cachexia is a syndrome characterized by high prevalence and multifactorial etiology. The pathophysiology of cancer-induced weight loss is mainly due to failure of food intake and to various metabolic abnormalities, including hypermetabolism. Multiple biologic pathways are involved in this process, including pro-inflammatory cytokines, neuroendocrine hormones and tumour specific factors such as proteolysis inducing factor (PIF). As a result, a protein and energy depletion is observed that is greater than what would be expected based on the simple decrease of food intake and is associated with marked reduction of lean body mass (LBM). Therapy requires a multi-model approach with control of reduced food intake and of the metabolic abnormalities. Combination treatment with nutritional support and modulation of metabolic/inflammation changes is promising. In this regard, n-3 fatty acids in dose of at least 1.5 g/day for a prolonged time to advanced cancer patients with weight loss, are associated with an improvement of clinical, biological and functional parameters and with amelioration of quality of life.  相似文献   

12.
A highly malignant transplantable rat lymphosarcoma was studied to determine the involvement of hepatic adrenergic receptors in the development of the hypoglycemia of cancer cachexia. Following inoculation of Fischer 344 rats with lymphosarcoma cells, rats were examined at 2 and 4 weeks, at the pre-cachexic stage; 6 weeks, at the transitional stage; and 7 weeks, at the cachexic hypoglycemic stage of lymphosarcoma progression. Death occurred by the 8th week. Blood glucose levels in lymphosarcoma-bearing rats relative to control rats were: unaffected at week 2; significantly reduced 8% at weeks 4 and 6; and reduced 24% at week 7. 1 adrenergic receptor binding to plasma membranes isolated from the livers of lymphosarcoma-bearing rats was: 114, 89, 67 and 30% of control at weeks 2, 4, 6, and 7, respectively. Kinetic analysis indicated that the lymphosarcoma-induced decrease at week 7 was due to a decrease in numbers of receptors with no change in affinity: Bmaxcontrol: 1411.1 fmol/mg; Kdcontrol: 0.44 nm; Bmaxlympho: 345.5 fmol/mg; Kdlympho: 0.50 nm. 2 adrenergic receptor binding to plasma membranes isolated from the livers of lymphosarcoma-bearing rats was: 130, 137, 243 and 212% of control at weeks 2, 4, 6, and 7, respectively. The pattern of changes in hepatic 1, 2 and adrenergic receptors at week 6 was comparable to that of 17 day fetal liver: a decrease in 1 and and an increase in 2. Hepatic adrenergic receptor changes occurred in the absence of liver damage and were not due to contamination of the liver plasma membrane fractions with lymphosarcoma cells. Plasma insulin levels displayed modest (10–15%), but not statistically significant, increases post-inoculation after week 4. Plasma glucagon levels fluctuated post-inoculation until week 7 where they were significantly increased: 202% of control. Plasma T3 and T4 levels displayed an early and steady decline after lymphosarcoma inoculation: T3: unchanged at week 2 and significantly decreased 14, 44 and 50% at weeks 4, 6 and 7, respectively. T4 increased 20% at week 1; decreased 9% at week 4 and significantly decreased thereafter: 55 and 49% at weeks 6 and 7, respectively. We propose that the development of the hypoglycemia of cancer cachexia in this lymphosarcoma model is due primarily to an early and progressive thyroid hormone dependent decrease in the number of hepatic 1 adrenergic receptors, compounded by an increase and decrease, respectively, in the hepatic and 2 adrenergic receptors.  相似文献   

13.
14.
In recent years, the concept of nutrition in patients with tumour diseases has been changing very significantly. The article discusses the pathogenesis of tumour cachexia and sarcopenia, which have been intensively studied, particularly in the last ten years. The possibilities and modern approaches in nutritional support in oncology are reviewed with a special emphasis on the group of elderly patients. Also, a detailed list of the most frequently used pharmaconutrients in oncology is presented. The recommendations for nutritional care of elderly oncological patients are given and discussed.  相似文献   

15.
In the mammalian adipose organ cold exposure not only activates typical brown adipose tissue, but also induces browning, that is the formation of thermogenic multilocular adipocytes in white, or predominantly white, adipose depots such as subcutaneous fat. Unlike typical brown adipocytes, newly formed thermogenic adipocytes have been reported not to express the gene zinc finger of the cerebellum 1 (Zic1). Here, a time course approach enabled us to document a significant increase in Zic1 messenger RNA in inguinal subcutaneous fat from acutely (24 hr) cold-exposed mice, which was paralleled by an increase in multilocular and paucilocular uncoupling protein 1-positive adipocytes and in parenchymal noradrenergic innervation. This transient, depot-specific molecular signature was associated not to Zic1 promoter demethylation, but to chromatin remodeling through an H3K9me3 histone modification. These findings challenge the notion that Zic1 is exclusively expressed by typical brown adipocytes and suggest its involvement in brown adipocyte precursor differentiation and/or white-to-brown adipocyte transdifferentiation.  相似文献   

16.
Cancer-bearing often exhibits hypoinsulinemia, insulin (INS) resistance and glutamine depletion associated with cachexia. However, INS and glutamine effects on cachexia metabolic abnormalities, particularly on tumor-affected proteins related to INS resistance, are poorly known. The main purpose of this study was to investigate the effects of INS and glutamine dipeptide (GDP) treatments on phospho-protein kinase B (p-Akt), and phospho-hormone sensitive lipase (p-HSL) in Walker-256 tumor-bearing rats. INS (NPH, 40 UI/kg, subcutaneous), GDP (1.5 g/kg, oral), INS+GDP or vehicle (control rats) were administered for 13 days, once a day, starting at the day of inoculation of tumor cells. The experiments were performed 4 hours after the last treatment to evaluate acute effects of INS and GDP, besides the chronic effects. INS and/or INS+GDP treatments, which markedly increased the insulinemia, increased the p-Akt: total Akt ratio and prevented the increased p-HSLSer552: total HSL ratio in the retroperitoneal fat of tumor-bearing rats, without changing the INS resistance and increased expression of factor tumor necrosis-α (TNF-α) in this tissue. INS and INS+GDP also increased the p-Akt: total Akt ratio, whereas GDP and INS+GDP increased the GLUT4 glucose transporter gene expression, in the gastrocnemius muscle of the tumor-bearing rats. Accordingly, treatments with INS and INS+GDP markedly reduced glycemia, increased retroperitoneal fat and attenuated the body mass loss of tumor-bearing rats. In conclusion, hyperinsulinemia induced by high-dose INS treatments increased Akt phosphorylation and prevented increased p-HSLSer552: total HSL ratio, overlapping INS resistance. These effects are consistent with increased fat mass gain and weight loss (cachexia) attenuation of tumor-bearing rats, evidencing that Akt activation is a potential strategy to prevent loss of fat mass in cancer cachexia.  相似文献   

17.
The aim is to review major clinical trials that have used megestrol acetate (MA) in the treatment of cachexia across several disease states. A review of general usage and potential side-effects are discussed. A theory that the newly approved nanocrystal formation of MA can better deliver this potent medication for treatment will also be reviewed.  相似文献   

18.
《Developmental cell》2021,56(18):2664-2680.e6
  1. Download : Download high-res image (201KB)
  2. Download : Download full-size image
  相似文献   

19.
Cachexia is a wasting syndrome characterized by devastating skeletal muscle atrophy that dramatically increases mortality in various diseases, most notably in cancer patients with a penetrance of up to 80%. Knowledge regarding the mechanism of cancer‐induced cachexia remains very scarce, making cachexia an unmet medical need. In this study, we discovered strong alterations of iron metabolism in the skeletal muscle of both cancer patients and tumor‐bearing mice, characterized by decreased iron availability in mitochondria. We found that modulation of iron levels directly influences myotube size in vitro and muscle mass in otherwise healthy mice. Furthermore, iron supplementation was sufficient to preserve both muscle function and mass, prolong survival in tumor‐bearing mice, and even rescues strength in human subjects within an unexpectedly short time frame. Importantly, iron supplementation refuels mitochondrial oxidative metabolism and energy production. Overall, our findings provide new mechanistic insights in cancer‐induced skeletal muscle wasting, and support targeting iron metabolism as a potential therapeutic option for muscle wasting diseases.  相似文献   

20.
Cancer cachexia is a wasting syndrome characterised by the loss of fat and/or muscle mass in advanced cancer patients. It has been well-established that cancer cells themselves can induce cachexia via the release of several pro-cachectic and pro-inflammatory factors. However, it is unclear how this process is regulated and the key cachexins that are involved. In this study, we validated C26 and EL4 as cachexic and non-cachexic cell models, respectively. Treatment of adipocytes and myotubes with C26 conditioned medium induced lipolysis and atrophy, respectively. We profiled soluble secreted proteins (secretome) as well as small extracellular vesicles (sEVs) released from cachexia-inducing (C26) and non-inducing (EL4) cancer cells by label-free quantitative proteomics. A total of 1268 and 1022 proteins were identified in the secretome of C26 and EL4, respectively. Furthermore, proteomic analysis of sEVs derived from C26 and EL4 cancer cells revealed a distinct difference in the protein cargo. Functional enrichment analysis using FunRich highlighted the enrichment of proteins that are implicated in biological processes such as muscle atrophy, lipolysis, and inflammation in both the secretome and sEVs derived from C26 cancer cells. Overall, our characterisation of the proteomic profiles of the secretory factors and sEVs from cachexia-inducing and non-inducing cancer cells provides insights into tumour factors that promote weight loss by mediating protein and lipid loss in various organs and tissues. Further investigation of these proteins may assist in highlighting potential therapeutic targets and biomarkers of cancer cachexia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号