首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cripto-1 has been implicated in a number of human cancers. Although there is high potential for a role of Cripto-1 in glioblastoma multiforme (GBM) pathogenesis and progression, few studies have tried to define its role in GBM. These studies were limited in that Cripto-1 expression was not studied in detail in relation to markers of cancer initiation and progression. Therefore, these correlative studies allowed limited interpretation of Criptos-1's effect on the various aspects of GBM development using the U87 GBM cell line. In this study, we sought to delineate the role of Cripto-1 in facilitating pathogenesis, stemness, proliferation, invasion, migration and angiogenesis in GBM. Our findings show that upon overexpressing Cripto-1 in U87 GBM cells, the stemness markers Nanog, Oct4, Sox2, and CD44 increased expression. Similarly, an increase in Ki67 was observed demonstrating Cripto-1's potential to induce cellular proliferation. Likewise, we report a novel finding that increased expression of the markers of migration and invasion, Vimentin and Twist, correlated with upregulation of Cripto-1. Moreover, Cripto-1 exposure led to VEGFR-2 overexpression along with higher tube formation under conditions promoting endothelial growth. Taken together our results support a role for Cripto-1 in the initiation, development, progression, and maintenance of GBM pathogenesis. The data presented here are also consistent with a role for Cripto-1 in the re-growth and invasive growth in GBM. This highlights its potential use as a predictive and diagnostic marker in GBM as well as a therapeutic target.  相似文献   

2.
Glioblastoma multiforme (GBM) is the most common and most fatal primary malignant brain tumour in adults. The average survival time of patients after diagnosis is only 12–15 months. And its characteristics of excessive proliferation and apoptosis evasion play a crucial role in the poor prognosis of patients. Therefore, it is worth investigating the molecular mechanism of GBM to find an effective therapeutic target to overcome the dilemma. In the current study, Transmembrane BAX inhibitor motif containing 1 (TMBIM1) was highly expressed in GBM tissues and high TMBIM1 expression in GBM cell lines (U87 and U251) could promote cell proliferation and inhibit cell cycle arrest. In addition, TMBIM1 could significantly attenuate GBM cell apoptosis and decrease the sensitivity of GBM cells to temozolomide (TMZ). In terms of the molecular mechanism, we revealed that TMBIM1 interferes with the p38/MAPK pathway by inhibiting p38 phosphorylation to promote cell proliferation and attenuate cell apoptosis. In vivo experiments showed that the survival time of mice in TMBIM1 knockdown group was significantly prolonged. Our discovery provided an important basis for future intensive molecular mechanism research in GBM and presented a potential target for the treatment of GBM.  相似文献   

3.
4.
5.

Glioblastoma (GBM) is one of the most frequent primary brain tumors. Limited therapeutic options and high recurrency rates lead to a dismal prognosis. One frequent, putative driver mutation is the genomic amplification of the oncogenic receptor tyrosine kinase EGFR. Often accompanied by variants like EGFRvIII, heterogenous expression and ligand independent signaling render this tumor subtype even more difficult to treat, as EGFR-directed therapeutics show only weak effects at best. So EGFR-amplified GBM is considered to have an even worse prognosis, and therefore, deeper understanding of molecular mechanisms and detection of potential targets for novel therapeutic strategies is urgently needed. In this study, we looked at the level of microRNAs (miRs), small non-coding RNAs frequently deregulated in cancer, both acting as oncogenes and tumor suppressors. Comparative analysis of GBM with and without EGFR amplification should give insight into the expression profiles of miRs, which are considered both as potential targets for directed therapies or as therapeutic reagents. Comparison of miR profiles of EGFR-amplified and EGFR-normal GBM revealed an upregulation of the miR-183/96/182 cluster, which is associated with oncogenic properties in several tumor entities. One prominent target of this miR cluster is FOXO1, a pro-apoptotic factor. By observing FOXO1 downregulation in EGFR-amplified tumors, we can see a significant correlation of EGFR amplification, miR-183/96/182 cluster upregulation, and repression of FOXO1. Although no significant difference in overall survival is shown, these data may contribute to the molecular understanding of this tumor subtype and offer potential targets for miR-based therapies.

  相似文献   

6.
Glioblastoma (GBM) is the most common malignant brain tumor and is associated with a poor prognosis, with most patients living less than a year after diagnosis. Given that GBM nearly always recurs after conventional treatments, there is an urgent need to identify novel molecular targets. Hairless (HR) is a nuclear factor enriched in the skin and has been previously implicated in hair cycling. HR is also highly expressed in the brain, but its significance is unknown. We found that human hairless gene (HR) expression is significantly decreased in all GBM subtypes compared with normal brain tissue and is predictive of prognosis, which suggests that loss of HR expression can contribute to GBM pathogenesis. HR was recently discovered to bind to and regulate p53 responsive elements, and thus we hypothesized that HR may have a tumor suppressive function in GBM by modulating p53 target gene expression. We found that HR indeed regulates p53 target genes, including those implicated in cell cycle progression and apoptosis in the GBM-derived U87 cell line, and restoring HR expression triggered G2/M arrest and apoptosis. An analysis of sequenced genomes from patients with GBM revealed 10 HR somatic mutations in patients with glioma, two of which are located in the histone demethylase domain of HR. These two mutations, P996S and K1004N, were reconstructed and found to have impaired p53 transactivating properties. Collectively, the results of our study suggest that HR has tumor suppressive functions in GBM, which may be clinically relevant and a potential avenue for therapeutic intervention.  相似文献   

7.
Osteoporosis and its related fractures are common causes of morbidity and mortality in older adults, but its underlying molecular and cellular mechanisms remain largely unknown. In this study, we found that lipoteichoic acid (LTA) treatment could ameliorate age-related bone degeneration and attenuate intramedullary macrophage senescence. FOXO1 signaling, which was downregulated and deactivated in aging macrophages, played a key role in the process. Blocking FOXO1 signaling caused decreased REDD1 expression and increased phosphorylation level of mTOR, a major driver of aging, as well as aggravated bone loss and deteriorated macrophage senescence. Moreover, LTA elevated FOXO1 signaling through β-catenin pathway while β-catenin inhibition significantly suppressed FOXO1 signaling, promoted senescence-related protein expression, and accelerated bone degeneration and macrophage senescence. Our findings indicated that β-catenin/FOXO1/REDD1 signaling plays a physiologically significant role that protecting macrophages from senescence during aging.  相似文献   

8.
9.
目的: 研究mRNA前体切割和多聚腺苷酸化特异性因子6(polyadenylation specific factor 6,CPSF6)对人胶质母细胞瘤(glioblastoma,GBM)细胞系U87和U251的增殖、迁移、侵袭以及ATP水平的影响,进一步探究其相关调控机制。方法: 通过Western blot和免疫组化检测CPSF6在GBM组织中的表达水平,利用在线数据库分析CPSF6在GBM组织和配对的非肿瘤组织中的表达水平,同时分析CPSF6与GBM的组织学级别和患者预后的关系。构建敲低CPSF6的U87和U251稳定表达细胞株,并采用RT-qPCR和Western blot方法分别验证U87和U251细胞中CPSF6的敲低效率;利用CCK8和Transwell实验分别检测CPSF6敲降对细胞增殖、迁移和侵袭能力的影响;ATP实验检测细胞内的ATP水平变化,确定CPSF6在GBM中的致癌作用。通过RNA-seq分析敲低CPSF6后GBM内mRNA 3'UTR变化情况,KEGG富集分析差异靶基因相关的信号通路。在富集出的信号通路指示下,利用透射电镜和Western blot实验进一步验证敲低CPSF6后GBM自噬的发生情况。 结果: CPSF6在GBM组织中呈现出高表达,其表达水平随组织学级别的增加而升高,且与患者不良预后相关。在U87和U251中敲低CPSF6后,细胞的增殖、迁移及侵袭能力均明显降低,细胞内ATP水平下降。对RNA-seq结果分析表明,敲低CPSF6后发生3'UTR缩短事件的基因远多于3'UTR延长事件的基因;KEGG富集到自噬信号通路与肿瘤进展密切相关,透射电镜和Western blot实验验证敲低CPSF6可以促进自噬通路的激活。结论: CPSF6在GBM中高表达,且与GBM的组织学级别和患者不良预后呈正相关,CPSF6可能通过抑制自噬通路的激活来促进U87和U251细胞的增殖、迁移、侵袭以及ATP的生成,进而促进GBM发生、发展。  相似文献   

10.
11.
《Cytotherapy》2014,16(7):1011-1023
Background aimsGlioblastoma multiforme (GBM) is the most common and lethal primary brain tumor and current treatments have not improved its prognosis. Therefore, new strategies and therapeutic agents should be investigated. Growth arrest specific-1 (Gas1) is a protein that induces cell arrest and apoptosis of gliomas and a soluble form, tGas1, increases these effects acting in both autocrine and paracrine manners. Moreover, neural stem cells (NSCs) can be used as a vehicle to transport therapeutic molecules because they have innate tropism towards tumors.MethodsLentiviral vectors were used to obtain NSCs capable of expressing tGas1 in a regulated manner. The ability of engineered NSCs to track and reach GBM in vivo, produce tGas1, and their efficacy decreasing tumor growth and increasing the overall health and survival time of nude mice implanted with GBM were assessed.ResultsThe overexpression of tGas1 from NSCs decreased viability and induced cell arrest and apoptosis of GBM cells and also, albeit in a reduced manner, of NSCs themselves. NSCs migrate from one cerebral hemisphere to the contralateral, reach GBM, express the tGas1 transgene when induced by tetracycline and produce the protein. Tumor volume decreased by 77% compared with controls, and tGas1 improved the overall health and increased the survival time of mice implanted with GBM by 75%.ConclusionsWe demonstrated that tGas1 has an antineoplastic effect, and the results support the potential of tGas1 as an adjuvant for the treatment of gliomas.  相似文献   

12.
Glioblastoma (GBM) is a malignant brain tumour with poor prognosis. The potential pathogenesis and therapeutic target are still need to be explored. Herein, TCGA expression profile data and clinical information were downloaded, and the WGCNA was conducted. Hub genes which closely related to poor prognosis of GBM were obtained. Further, the relationship between the genes of interest and prognosis of GBM, and immune microenvironment were analysed. Patients from TCGA were divided into high- and low-risk group. WGCNA was applied to the high- and low-risk group and the black module with the lowest preservation was identified which could distinguish the prognosis level of these two groups. The top 10 hub genes which were closely related to poor prognosis of patients were obtained. GO analysis showed the biological process of these genes mainly enriched in: Cell cycle, Progesterone-mediated oocyte maturation and Oocyte meiosis. CDCA5 and CDCA8 were screened out as the genes of interest. We found that their expression levels were closely related to overall survival. The difference analysis resulted from the TCGA database proved both CDCA5 and CDCA8 were highly expressed in GBM. After transfection of U87-MG cells with small interfering RNA, it revealed that knockdown of the CDCA5 and CDCA8 could influence the biological behaviours of proliferation, clonogenicity and apoptosis of GBM cells. Then, single-gene analysis was performed. CDCA5 and CDCA8 both had good correlations with genes that regulate cell cycle in the p53 signalling pathway. Moreover, it revealed that high amplification of CDCA5 was correlated with CD8+ T cells while CDCA8 with CD4+ T cells in GBM. These results might provide new molecular targets and intervention strategy for GBM.  相似文献   

13.
14.
Glioblastoma (GBM) is extremely aggressive and essentially incurable. Its malignancy is characterized by vigorous microvascular proliferations. Recent evidence has shown that tumor cells display the ability to drive blood-perfused vasculogenic mimicry (VM), an alternative microvascular circulation independent of endothelial cell angiogenesis. However, molecular mechanisms underlying this vascular pathogenesis are poorly understood. Here, we found that vascular channels of VM in GBM were composed of mural-like tumor cells that strongly express VEGF receptor 2 (Flk-1). To explore a potential role of Flk-1 in the vasculogenesis, we investigated two glioblastoma cell lines U87 and GSDC, both of which express Flk-1 and exhibit a vascular phenotype on Matrigel. Treatment of both cell lines with either Flk-1 gene knockdown or Flk-1 kinase inhibitor SU1498 abrogated Flk-1 activity and impaired vascular function. Furthermore, inhibition of Flk-1 activity suppressed intracellular signaling cascades, including focal adhesion kinase and mitogen-activated protein kinase ERK1/2. In contrast, blockade of VEGF activity by the neutralizing antibody Bevacizumab failed to recapitulate the impact of SU1498, suggesting that Flk-1-mediated VM is independent of VEGF. Xenotransplantation of SCID/Beige mice with U87 cells and GSDCs gave rise to tumors harboring robust mural cell-associated vascular channels. Flk-1 shRNA restrained VM in tumors and subsequently inhibited tumor development. Collectively, all the data demonstrate a central role of Flk-1 in the formation of VM in GBM. This study has shed light on molecular mechanisms mediating tumor aggressiveness and also provided a therapeutic target for patient treatment.  相似文献   

15.
WW domain containing oxidoreductase, designated WWOX, FOR or WOX1, is a known pro-apoptotic factor when ectopically expressed in various types of cancer cells, including glioblastoma multiforme (GBM). The activation of sonic hedgehog (Shh) signaling, especially paracrine Shh secretion in response to radiation, is associated with impairing the effective irradiation of cancer cells. Here, we examined the role of Shh signaling and WOX1 overexpression in the radiosensitivity of human GBM cells. Our results showed that ionizing irradiation (IR) increased the cytoplasmic Shh and nuclear Gli-1 content in GBM U373MG and U87MG cells. GBM cells with exogenous Shh treatment exhibited similar results. Pretreatment with Shh peptides protected U373MG and U87MG cells against IR in a dose-dependent manner. Cyclopamine, a Hedgehog/Smoothened (SMO) inhibitor, reversed the protective effect of Shh in U87MG cells. Cyclopamine increased Shh plus IR-induced H2AX, a marker of DNA double-strand breaks, in these cells. To verify the role of Shh signaling in the radiosensitivity of GBM cells, we tested the effect of the Gli family zinc finger 1 (Gli-1) inhibitor zerumbone and found that it could sensitize GBM cells to IR. We next examined the role of WOX1 in radiosensitivity. Overexpression of WOX1 enhanced the radiosensitivity of U87MG (possessing wild type p53 or WTp53) but not U373MG (harboring mutant p53 or MTp53) cells. Pretreatment with Shh peptides protected both WOX1-overexpressed U373MG and U87MG cells against IR and increased the cytoplasmic Shh and nuclear Gli-1 content. Zerumbone enhanced the radiosensitivity of WOX1-overexpressed U373MG and U87MG cells. In conclusion, overexpression of WOX1 preferentially sensitized human GBM cells possessing wild type p53 to radiation therapy. Blocking of Shh signaling may enhance radiosensitivity independently of the expression of p53 and WOX1. The crosstalk between Shh signaling and WOX1 expression in human glioblastoma warrants further investigation.  相似文献   

16.
17.
18.

Background

Zerumbone, a sesquiterpene compound isolated from subtropical ginger, Zingiber zerumbet Smith, has been documented to exert antitumoral and anti- inflammatory activities. In this study, we demonstrate that zerumbone induces apoptosis in human glioblastoma multiforme (GBM8401) cells and investigate the apoptotic mechanism.

Methods

We added a caspase inhibitor and transfected wild-type (WT) IKK and Akt into GBM 8401 cells, and measured cell viability and apoptosis by MTT assay and flow cytometry. By western blotting, we evaluated activation of caspase-3, dephosphorylation of IKK, Akt, FOXO1 with time, and change of IKK, Akt, and FOXO1 phosphorylation after transfection of WT IKK and Akt.

Results

Zerumbone (10∽50 μM) induced death of GBM8401 cells in a dose-dependent manner. Flow cytometry studies showed that zerumbone increased the percentage of apoptotic GBM cells. Zerumbone also caused caspase-3 activation and poly (ADP-ribose) polymerase (PARP) production. N-benzyloxycarbonyl -Val-Ala-Asp- fluoromethylketone (zVAD-fmk), a broad-spectrum caspase inhibitor, hindered zerumbone-induced cell death. Transfection of GBM 8401 cells with WT IKKα inhibited zerumbone-induced apoptosis, and zerumbone significantly decreased IKKα phosphorylation levels in a time-dependent manner. Similarly, transfection of GBM8401 cells with Akt suppressed zerumbone-induced apoptosis, and zerumbone also diminished Akt phosphorylation levels remarkably and time-dependently. Moreover, transfection of GBM8401 cells with WT IKKα reduced the zerumbone-induced decrease in Akt and FOXO1 phosphorylation. However, transfection with WT Akt decreased FOXO1, but not IKKα, phosphorylation.

Conclusion

The results suggest that inactivation of IKKα, followed by Akt and FOXO1 phosphorylation and caspase-3 activation, contributes to zerumbone-induced GBM cell apoptosis.  相似文献   

19.
HIF-1α regulated genes are mainly responsible for tumour resistance to radiation- and chemo-therapy. Among these genes, carbonic anhydrase isoform IX (CA9) is highly over expressed in many types of cancer especially in high grade brain cancer like Glioblastoma (GBM). Inhibition of the enzymatic activity by application of specific chemical CA9 inhibitor sulphonamides (CAI) like Acetazolamide (Aza.), the new sulfonamide derivative carbonic anhydrase inhibitor (SU.D2) or indirect inhibitors like the HIF-1α inhibitor Chetomin or molecular inhibitors like CA9-siRNA are leading to an inhibition of the functional role of CA9 during tumorigenesis. Human GBM cells were treated with in vitro hypoxia (1, 6, or 24 h at 0.1%, O2). Aza. application was at a range between 250 and 8000 nM and the HIF-1α inhibitor Chetomin at a concentration range of 150–500 nM. Cell culture plates were incubated for 24 h under hypoxia (0.1% O2). Further, CA9-siRNA constructs were transiently transfected into GBM cells exposed to extreme hypoxic aeration conditions. CA9 protein expression level was detectable in a cell-type specific manner under normoxic conditions. Whereas U87-MG exhibited a strong aerobic expression, U251 and U373 displayed moderate and GaMG very weak normoxic CA9 protein bands. Aza. as well as SU.D2 displayed inhibitory characteristics to hypoxia induced CA9 expression in the four GBM cell lines for 24 h of hypoxia (0.1% O2) at concentrations between 3500 and 8000 nM, on both the protein and mRNA level. Parallel experiments using CA9-siRNA confirmed these results. Application of 150–500 nM of the glycolysis inhibitor Chetomin under similar oxygenation conditions led to a sharply reduced expression of both CA IX protein and CA9 mRNA levels, indicating a clear glucose availability involvement for the hypoxic HIF-1α and CA9 expression in GBM cells. Hypoxia significantly influences the behaviour of human tumour cells by activation of genes involved in the adaptation to hypoxic stress. The main objective in malignant GBM therapy is either to eradicate the tumour or to convert it into a controlled, quiescent chronic disease. Aza., SU.D2, Chetomin or CA9-siRNA possesses functional CA9 inhibitory characteristics when applied against human cancers with hypoxic regions like GBM. They may be used as alternative or in conjunction with other direct inhibitors possessing similar functionality, thereby rendering them as potential optimal tools for the development of an optimized therapy in human brain cancer treatment.  相似文献   

20.
EGFR-TKI靶向治疗在非小细胞肺癌(non-small cell lung cancer, NSCLC)综合治疗中显示出重要作用;然而,耐药性却极大限制其临床治疗效果。受体酪氨酸激酶样孤儿受体(receptor tyrosine kinase-like orphan receptor 1, ROR1)是I型受体酪氨酸激酶家族中的成员,在肿瘤发生发展中发挥重要作用。本研究拟探讨ROR1介导非小细胞肺癌吉非替尼耐药的作用及机制。采用吉非替尼反复诱导非小细胞肺癌HCC827细胞,建立吉非替尼耐药细胞株HCC827/GR。应用荧光定量PCR和Western 印迹检测HCC827/GR内ROR1的表达。采用shRNA的方法体外检测ROR1敲除前后HCC827/GR对吉非替尼耐药的变化,采用体外检测ROR1过表达前后HCC827对吉非替尼耐药的变化。体内检测ROR1敲除前后HCC827/GR对吉非替尼耐药的变化。Western 印迹检测HCC827/GR内ROR1下游信号分子的活化。实时荧光定量PCR及Western 印迹结果显示,HCC827/GR耐药细胞中的ROR1 mRNA和蛋白质表达水平显著高于HCC827敏感细胞。体外干扰ROR1表达,可明显增强HCC827/GR耐药细胞对吉非替尼的敏感性 (IC50 15.3±3.69 vs. 4.2±1.38),增加吉非替尼诱导的细胞凋亡 (20.5±2.52 vs. 41.8±3.74)。体外过表达ROR1显著增强HCC827敏感细胞对吉非替尼的耐药性(IC50 0.8±0.52 vs. 2.2±0.87)。体内裸鼠移植瘤实验同样发现,干扰ROR1能增强HCC827/GR移植瘤对吉非替尼的敏感性。进一步研究发现,AKT/FOXO1信号在HCC827/GR耐药细胞中异常活化,而干扰ROR1能够抑制AKT的磷酸化,并上调FOXO1的表达。上述结果表明,ROR1参与非小细胞肺癌吉非替尼耐药,抑制ROR1能够逆转吉非替尼耐药,其机制与ROR1调控AKT/FOXO1信号有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号