首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 483 毫秒
1.

Peripheral neuropathy is the most prevalent chronic complication of diabetes mellitus. Good glycemic control can delay the appearance of neuropathic symptoms in diabetic patients but it is not sufficient to prevent or cure the disease. Therefore therapeutic approaches should focus on attenuation of pathogenetic mechanisms responsible for the nerve injury. Considering the role of polyol pathway in the etiology of diabetic neuropathy, we evaluated the effect of a novel efficient and selective aldose reductase inhibitor, 3-mercapto-5H-1,2,4-triazino[5,6-b]indole-5-acetic acid (cemtirestat), on symptoms of diabetic peripheral neuropathy in Zucker Diabetic Fatty (ZDF) rats. Since the age of 5 months, male ZDF rats were orally administered cemtirestat, 2.5 and 7.5 mg/kg/day, for two following months. Thermal hypoalgesia was evaluated by tail flick and hot plate tests. Tactile allodynia was determined by a von Frey flexible filament test. Two-month treatment of ZDF rats with cemtirestat (i) did not affect physical and glycemic status of the animals; (ii) partially inhibited sorbitol accumulation in red blood cells and the sciatic nerve; (iii) markedly decreased plasma levels of thiobarbituric acid reactive substances; (iv) normalized symptoms of peripheral neuropathy with high significance. The presented findings indicate that inhibition of aldose reductase by cemtirestat is not solely responsible for the recorded improvement of the behavioral responses. In future studies, potential effects of cemtirestat on consequences of diabetes that are not exclusively dependent on glucose metabolism via polyol pathway should be taken into consideration.

  相似文献   

2.
Diabetic peripheral neuropathy is a common complication of long-standing diabetes mellitus. To mimic clinical trials in which patients with diabetes enrolled have advanced peripheral neuropathy, we investigated the effect of sildenafil, a specific inhibitor of phosphodiesterase type 5 enzyme, on long term peripheral neuropathy in middle aged male mice with type II diabetes. Treatment of diabetic mice (BKS.Cg-m+/+Leprdb/J, db/db) at age 36 weeks with sildenafil significantly increased functional blood vessels and regional blood flow in the sciatic nerve, concurrently with augmentation of intra-epidermal nerve fiber density in the skin and myelinated axons in the sciatic nerve. Functional analysis showed that the sildenafil treatment considerably improved motor and sensory conduction velocities in the sciatic nerve and peripheral thermal stimulus sensitivity compared with the saline treatment. In vitro studies showed that mouse dermal endothelial cells (MDE) cultured under high glucose levels exhibited significant down regulation of angiopoietin 1 (Ang1) expression and reduction of capillary-like tube formation, which were completely reversed by sildenafil. In addition, incubation of dorsal root ganglia (DRG) neurons with conditioned medium harvested from MDE under high glucose levels suppressed neurite outgrowth, where as conditional medium harvested from MDE treated with sildenafil under high glucose levels did not inhibit neurite outgrowth of DRG neurons. Moreover, blockage of the Ang1 receptor, Tie2, with a neutralized antibody against Tie2 abolished the beneficial effect of sildenafil on tube formation and neurite outgrowth. Collectively, our data indicate that sildenafil has a therapeutic effect on long term peripheral neuropathy of middle aged diabetic mice and that improvement of neurovascular dysfunction by sildenafil likely contributes to the amelioration of nerve function. The Ang1/Tie2 signaling pathway may play an important role in these restorative processes.  相似文献   

3.
Diabetic peripheral neuropathy is one of the most common microvascular complications that occurs with both type 1 and type 2 diabetes mellitus. It has a significant negative impact on patients’ quality of life; as it starts with loss of limbs’ sensation and may lead to lower limb amputation. This study aimed at investigating the effect of liraglutide on peripheral neuropathy in diabetic rats. Experimental diabetes was induced by single intraperitoneal injections of nicotinamide (50 mg/kg) and streptozotocin (52.5 mg/kg). Rats were allocated into five groups. Two groups were given saline or liraglutide (0.8 mg/kg, s.c.). Three diabetic groups were either untreated or treated with liraglutide (0.8 mg/kg, s.c.) or pregabalin (10 mg/kg, i.p.). After 2 weeks of treatment, behavioral, biochemical, histopathological, and immunohistochemical investigations were performed. Treatment with liraglutide‐restored animals’ body weight, normalized blood glucose, decreased glycated hemoglobin, and increased insulin levels. In parallel, it normalized motor coordination and the latency withdrawal time of both tail flick and hind paw cold allodynia tests and reversed histopathological alterations. Treatment with liraglutide also normalized malondialdehyde, matrix metalloproteinase‐2 and ‐9 contents in sciatic nerve. Likewise, it decreased sciatic nerve nitric oxide and interleukin‐6 contents, DNA fragmentation and expression of cyclooxygenase‐2. Meanwhile, it increased superoxide dismutase and interleukin‐10 contents in sciatic nerve. These findings indicate the neuroprotective effect of liraglutide against diabetic peripheral neuropathy probably via modulating oxidative stress, inflammation, and extracellular matrix remodeling.

  相似文献   

4.
Diabetic neuropathy is commonly observed complication in more than 50 % of type 2 diabetic patients. Histone deacetylases including SIRT1 have significant role to protect neuron from hyperglycemia induced damage. Formononetin (FMNT) is known for its effect to control hyperglycemia and also activate SIRT1. In present study, we evaluated effect of FMNT as SIRT1 activator in type 2 diabetic neuropathy. Type 2 diabetic neuropathy was induced in rats by modification of diet for 15 days using high fat diet and administration of streptozotocin (35 mg/kg/day, i. p.). FMNT treatment was initiated after confirmation of type 2 diabetes. Treatment was given for 16 weeks at 10, 20 and 40 mg/kg/day dose orally. FMNT treatment‐controlled hypoglycemia and reduced insulin resistance significantly in diabetic animals. FMNT treatment reduced oxidative stress in sciatic nerve tissue. FMNT treatment also reduced thermal hyperalgesia and mechanical allodynia significantly. It improved conduction velocity in nerve and unregulated SIRT1 and NGF expression in sciatic nerve tissue. Results of present study indicate that continuous administration of FMNT protected diabetic animals from hyperglycemia induced neuronal damage by controlling hyperglycemia and increasing SIRT1 and NGF expression in nerve tissue. Thus, FMNT can be an effective candidate for treatment of type 2 diabetic neuropathy.  相似文献   

5.
Diabetic neuropathy is the most common complication of diabetes. We examined the levels and the mRNA expression of myelin proteins in the sciatic nerves and the brains of streptozotocin-induced diabetic rats. The diabetic rats exhibited a decrease in body weight, elevation of the blood glucose level and a decrease in motor nerve conduction velocity at 2 weeks after streptozotocin injection. In the sciatic nerves of diabetic rats, the level of P0 protein and its mRNA expression were markedly reduced at 20 weeks after the injection. In the brains, the levels of proteolipid protein and myelin-associated glycoprotein and their mRNA expression were selectively decreased at 20 weeks after the injection. This affected expression of myelin proteins was found even when no histological abnormalities were detectable. Considering the functional significance of myelin proteins, this impairment of protein expression is possibly involved in the pathogenesis of diabetic neuropathy, including that in brain disorders.  相似文献   

6.

Background  

Recent consensus guidelines recommend pregabalin as a first-tier treatment for painful diabetic peripheral neuropathy (DPN). We evaluated the efficacy of pregabalin 600 mg/d (300 mg dosed BID) versus placebo for relieving DPN-associated neuropathic pain, and assessed its safety using objective measures of nerve conduction (NC).  相似文献   

7.
《Endocrine practice》2007,13(5):550-566
ObjectiveTo review the clinical manifestations and current treatment options for diabetic neuropathies, one of the most common complications of diabetes mellitus.MethodsWe performed a MEDLINE search of the English-language literature using a combination of words (diabetic neuropathy, diabetic autonomic neuropathy, diagnosis and treatment) to identify original studies, consensus statements, and reviews on diabetic neuropathies published in the past 25 years. Emphasis was placed on clinical manifestations of distal polyneuropathy and its treatment, especially new therapies.ResultsDistal symmetric polyneuropathy, the most common form of diabetic neuropathy, usually involves small and large nerve fibers. Small-nerve fiber neuropathy often presents with pain and loss of intraepidermal nerve fibers, but without objective signs or electrophysiologic evidence of nerve damage. This type of neuropathy is a component of impaired glucose tolerance and the metabolic syndrome. The greatest risk from small-fiber neuropathy is foot ulceration and subsequent gangrene and amputation. Large-nerve fiber neuropathy produces numbness, ataxia, and incoordination, thus impairing activities of daily living and causing falls and fractures. Successfully treating diabetic neuropathy requires addressing the underlying pathogenic mechanisms, treating symptoms to improve quality of life, and preventing progression and complications of diabetes mellitus. Two new drugs, duloxetine hydrochloride and pregabalin, have recently been approved for treatment of neuropathic pain associated with diabetes mellitus.ConclusionSymptomatic therapy has become available and newer and better treatment modalities, based on etiologic factors, are being explored with potential for clinically significant reduction of morbidity and mortality. Preventive strategies and patient and physician education still remain key factors in reducing complication rates and mortality. (Endocr Pract. 2007;13:550-566)  相似文献   

8.
Diabetic neuropathy is one of the most common complications in diabetes mellitus. Thus far, effective therapeutic agents for restoring the impaired motor and sensory nerve functions in diabetic neuropathy are still lacking. The antioxidant and neuroprotective properties of tanshinone IIA make it a promising candidate for the treatment of diabetic neuropathy. Therefore, the present study investigated the possible beneficial effect of tanshinone IIA on the impaired nerve functions displayed by a rat diabetic model. Insulin-dependent diabetes in rats was developed by a single dose of streptozotocin (STZ) at 50 mg/kg. The diabetic rats were randomly divided into four groups (n = 10 in each group), and were intraperitoneally administrated daily for 4 weeks with tanshinone IIA (20 mg/kg, 50 mg/kg and 100 mg/kg), or normal saline from the fourth day after STZ injection, respectively. At the end of tanshinone IIA administration, thermal and mechanical nociceptive threshold were determined by a hot plate test and Von Frey hairs; motor nerve conducting velocity (MNCV) was determined by an electrophysiological method; nerve blood flow (NBF) was detected using a laser Doppler flow meter; Na+,K+ATPase activity, the level of superoxide dismutase (SOD), catalase and malondialdehyde (MDA) in sciatic nerves, and the serum total antioxidant capability were also determined. We found that tanshinone IIA was capable of restoring diabetes-induced deficit in nerve functions (MNCV and NBF), and impairment in thermal and mechanical nociceptive capability. In addition, tanshinone IIA significantly increased the serum total antioxidant capability, improved the activities of Na+,K+ATPase, increased the levels of SOD and catalase, and reduced the MDA level in sciatic nerves in diabetic rats. All the findings indicate the beneficial effect of tanshinone IIA on impaired nerve functions and raise the possibility of developing tanshinone IIA as a therapeutic agent for diabetic neuropathy.  相似文献   

9.
Abstract: The composition and metabolism of rat sciatic nerve phospholipids were studied 20 weeks after induction of chronic diabetes by intraperitoneal injection of streptozotocin (50 mg/kg). On a wet weight basis the nerves from the diabetic animals showed a 7% decrease in total phospholipid from that of controls and a relative decrease in phosphatidylinositol. Incubations of isolated sciatic nerves of diabetic rats in a medium containing [33P]orthophosphate gave decreased labeling of phosphatidylinositol and substantial changes in the labeling pattern of phosphatidylinositol phosphate and 4,5-bisphosphate from that of controls. The ratio of label in these polyphosphoinositides decreased from 2.5 for normal nerve to about 1.0 for diabetic nerve within a 2-h incubation period. These metabolic alterations were not observed in acutely diabetic animals 5 days after streptozotocin (100 mg/kg) administration. Because polyphosphoinositides may be involved in the control of membrane permeability during axonal conduction, alterations in their relative amounts or turnover rates could be related to the physiological changes of early diabetic neuropathy.  相似文献   

10.
Vanadium has been reported to have broad pharmacological activity both in vitro and in vivo. Vanadium compound, sodium orthovanadate, Na3VO4, is well known for its hypoglycaemic effects. However, Na3VO4 exerts these effects at relatively high doses (0.6 mg/ml) and exhibit several toxic effects. In the present study lower doses of Na3VO4 (0.2 mg/ml) are combined with Trigonella foenum graecum seed powder (TSP), another hypoglycaemic agent, to reduce its toxicity without compromising its antidiabetic potential. The efficacy of the lower doses of Na3VO4 has been investigated in restoring the altered glucose metabolism and histological structure in the sciatic nerves in 21 and 60 days alloxan diabetic rats. A portion of the glucose was found to be channelled from the normal glycolytic route to polyol pathway, evident by the reduced hexokinase activity and increased polyol pathway enzymes aldose reductase and sorbitol dehydrogenase activity causing accumulation of sorbitol and fructose in diabetic conditions. Ultrastructural observation of the sciatic nerve showed extensive demylination and axonal loss after eight weeks of diabetes induction. Blood glucose levels increased in diabetic rats were normalized with the lower dose of vanadium and Trigonella treatment. The treatment of the diabetic rats with vanadium and Trigonella prevented the activation of the polyol pathway and sugar accumulations. The sciatic nerves were also protected against the structural abnormalities found in diabetes with Trigonella foenum graecum as well as Na3VO4. Results suggest that lower doses of Na3VO4 may be used in combination with TSP as an efficient antidiabetic agent to effectively control the long-term complications of diabetes in tissues like peripheral nerve.  相似文献   

11.
Although numerous clinical studies have reported that pulsed electromagnetic fields (PEMF) have a neuroprotective role in patients with diabetic peripheral neuropathy (DPN), the application of PEMF for clinic is still controversial. The present study was designed to investigate whether PEMF has therapeutic potential in relieving peripheral neuropathic symptoms in streptozotocin (STZ)-induced diabetic rats. Adult male Sprague–Dawley rats were randomly divided into three weight-matched groups (eight in each group): the non-diabetic control group (Control), diabetes mellitus with 15 Hz PEMF exposure group (DM+PEMF) which were subjected to daily 8-h PEMF exposure for 7 weeks and diabetes mellitus with sham PEMF exposure group (DM). Signs and symptoms of DPN in STZ-treated rats were investigated by using behavioral assays. Meanwhile, ultrastructural examination and immunohistochemical study for vascular endothelial growth factor (VEGF) of sciatic nerve were also performed. During a 7-week experimental observation, we found that PEMF stimulation did not alter hyperglycemia and weight loss in STZ-treated rats with DPN. However, PEMF stimulation attenuated the development of the abnormalities observed in STZ-treated rats with DPN, which were demonstrated by increased hind paw withdrawal threshold to mechanical and thermal stimuli, slighter demyelination and axon enlargement and less VEGF immunostaining of sciatic nerve compared to those of the DM group. The current study demonstrates that treatment with PEMF might prevent the development of abnormalities observed in animal models for DPN. It is suggested that PEMF might have direct corrective effects on injured nerves and would be a potentially promising non-invasive therapeutic tool for the treatment of DPN.  相似文献   

12.
Abstract: Effects of ganglioside administration on elemental composition of peripheral nerve myelinated axons and Schwann cells were determined in streptozotocin-induced diabetic rats and nondiabetic controls. Diabetic rats (50 days after administration of streptozocin) exhibited a loss of axoplasmic K and Cl concentrations in sciatic nerve relative to control, whereas intraaxonal levels of these elements increased in tibial nerve. These regional changes in diabetic rat constitute a reversal of the decreasing proximodistal gradients for K and Cl concentrations that characterize normal peripheral nerve. Treatment of diabetic rats with a ganglioside mixture for 30 days (initiated 20 days after the administration of streptozocin) returned proximal sciatic nerve axoplasmic K and Cl concentrations to control levels, whereas in tibial axons, concentrations of these elements increased further relative to diabetic levels. Also in the ganglioside/diabetic group, mean axoplasmic Na concentrations were reduced and Ca levels were elevated. Mixed ganglioside treatment of nondiabetic rats significantly increased axoplasmic dry weight concentrations of K and Cl in proximal sciatic and tibial axons. Schwann cells did not exhibit consistent alterations in elemental content regardless of treatment group. Changes in elemental composition evoked by ganglioside treatment of diabetic rats might reflect the ability of these substances to stimulate Na+,K+-ATPase activity and might be related to the mechanism by which gangliosides improve functional deficits in experimental diabetic neuropathy.  相似文献   

13.
Peripheral neuropathy is a serious diabetic complication. Delayed nerve regeneration in diabetic animal models suggests abnormalities in proliferation/differentiation of Schwann cells (SC). We recently reported that endothelins (ETs) regulate proliferation and phenotype in primary and immortalized SC (iSC). We now investigated changes in the effects of ETs on SC proliferation and signaling in nerve segments from streptozotocin-induced diabetic rats and in iSC exposed to high glucose. Cultured explants from diabetic rats displayed a delay in the time-course of [3H]-thymidine incorporation as well as enhanced sensitivity to endothelin-1 (ET-1) or insulin. iSC cultured in high (25 mM) glucose-containing media also exhibited higher [3H]-thymidine incorporation, along with an enhanced activation of p38 mitogen-activated protein kinase and phospholipase C in response to ET-1 or platelet-derived growth factor as compared to controls (5.5 mM glucose). These studies support an extra-vascular role of ETs in peripheral nerves and SC. The increased sensitivity to ET-1 in nerves and iSC exposed to high glucose may contribute to abnormal SC proliferation characterizing diabetic neuropathy.  相似文献   

14.
Increased accumulation of NT (3‐nitrotyrosine) and PARylated [poly(ADP‐ribosyl)ated] proteins in the tissues of diabetics are associated with diabetes complications (diabetes neuropathy, nephropathy and retinopathy). Red wine (its polyphenols are considered to be the main active components) can act as ROS (reactive oxygen species) scavengers, iron chelators and enzyme modulators. This study is novel in investigating the effect of red wine in preventing the accumulation of NT and PARylated proteins in the sciatic nerve, DRG (dorsal root ganglia), spinal cord, kidney and retina of diabetic animals. We have shown that during the experiment the body weight of control and diabetic groups of rats with consumption of red wine was significantly increased, by 52% and 19% accordingly. The significant increase in the content of NT in the sciatic nerve, DRG, spinal cord, kidney and retina, and PARylated proteins in the sciatic nerve, renal glomeruli and retinae of diabetic rats was partly or completely prevented by treatment with red wine. Red wine and its polyphenol preparations might be a promising option in the prevention and treatment of diabetic complications.  相似文献   

15.
A series of mutual prodrugs derived from gabapentin, pregabalin, memantine, venlafaxine were synthesized and their pharmacological properties to treat neuropathic pain were investigated in a rat model of chronic sciatic nerve constriction injury (CCI). In vivo evaluation demonstrated that the mutual prodrugs 2002413A, 2002823A composed of two gabapentins, 2002414 composed of gabapentin and pregabalin were effective in reversal tactile allodynia in CCI rats. The prodrugs 2002413A, 2002414 had no significant influence on the rotarod activity. The result suggest that the prodrugs may be possible candidates for further development.  相似文献   

16.
17.
Abstract: Diabetic neuropathy is a degenerative complication of diabetes accompanied by an alteration of nerve conduction velocity (NCV) and Na,K-ATPase activity. The present study in rats was designed first to measure diabetes-induced abnormalities in Na,K-ATPase activity, isoenzyme expression, fatty acid content in sciatic nerve membranes, and NCV and second to assess the preventive ability of a fish oil-rich diet (rich in n-3 fatty acids) on these abnormalities. Diabetes was induced by intravenous streptozotocin injection. Diabetic animals (D) and nondiabetic control animals (C) were fed the standard rat chow either without supplementation or supplemented with either fish oil (DM, CM) or olive oil (DO, CO) at a daily dose of 0.5 g/kg by gavage during 8 weeks. Analysis of the fatty acid composition of purified sciatic nerve membranes from diabetic animals showed a decreased incorporation of C16:1(n-7) fatty acids and arachidonic acids. Fish oil supplementation changed the fatty acid content of sciatic nerve membranes, decreasing C18:2(n-6) fatty acids and preventing the decreases of arachidonic acids and C18:1(n-9) fatty acids. Protein expression of Na,K-ATPase α subunits, Na,K-ATPase activity, and ouabain affinity were assayed in purified sciatic nerve membranes from CO, DO, and DM. Na,K-ATPase activity was significantly lower in sciatic nerve membranes of diabetic rats and significantly restored in diabetic animals that received fish oil supplementation. Diabetes induced a specific decrease of α1- and α3-isoform activity and protein expression in sciatic nerve membranes. Fish oil supplementation restored partial activity and expression to varying degrees depending on the isoenzyme. These effects were associated with a significant beneficial effect on NCV. This study indicates that fish oil has beneficial effects on diabetes-induced alterations in sciatic nerve Na,K-ATPase activity and function.  相似文献   

18.
Cardiovascular autonomic neuropathy causes abnormalities in the diabetic heart with various clinical sequelae, including exercise intolerance, arrhythmias and painless myocardial infarction. Little is known about (ultra)structural alterations of the myocardial nervous network. On the assumption that this diabetes-specific neuropathy develops due to permanently increased oxidative stress by liberation of oxygen-free radicals, adjuvant application of antioxidative therapeutics appears promising in preventing or delaying long-term diabetic complications. We have investigated the effects of Ginkgo biloba extract (EGb 761), a radical scavenger, against diabetes-induced myocardial nervous damage in spontaneously diabetic BioBreeding/Ottawa Karlsburg (BB/OK) rats. Morphological and morphometric parameters were evaluated by electron microscopy. We used immunohistochemistry to investigate protein expression of protein gene product 9.5, S100 protein, and thyroxin hydroxylase as a neuronal marker. Alterations of cardiac sympathetic activity were measured using the in vivo 123I-metaiodobenzyl-guanidine imaging, and the immunofluorescent labeling of beta1-adrenergic receptors and adenylate cyclase. Our results revealed that A) Diabetes results in slight to moderate ultrastructural alterations (hydrops, disintegration of substructure) of autonomic nerve fibers and related Schwann cells in untreated BB diabetic rats; B) Cardiac sympathetic integrity and activity is impaired due to alterations in the presynaptic nerve terminals and the postsynaptic ?1-AR-AC coupling system; C) Pre-treatment of diabetic myocardium with EGb results in an improvement of most of these parameters compared to unprotected myocardium. In conclusion, EGb may act as a potent therapeutic adjuvant in diabetics with respect to cardiovascular autonomic neuropathy, which may contribute to the prevention of late complications in diabetes.  相似文献   

19.
A comparison of sciatic nerve neuropathy in diabetic and aged rats   总被引:1,自引:0,他引:1  
Koura NH 《Folia biologica》2003,51(3-4):213-218
We compared the development of sciatic nerve neuropathy in young diabetic rats with that in non-diabetic aged rats. Diabetes was induced in six-month old rats by injection with alloxan and was moderately controlled by single daily injections of insulin. Blood insulin levels in diabetic rats were significantly reduced compared to the aged animals, and glucose was significantly higher in diabetic rats. Sciatic nerve conduction velocities were measured monthly. Both motor and sensory conduction velocities decreased in the diabetic rats to a level that was similar to those in 36-month old rats. The decreases in conduction velocities in the diabetic rats were most dramatic during months 6 through 12 of diabetes. After 6 and 12 months of diabetes, sciatic nerves were examined by electron microscopy and compared to nerves from 24- and 36-month old rats respectively. Ultrastructural changes in the sciatic nerves of diabetic rats at 6 months included disruptions of myelin and dense axoplasm. In comparison, the 24-month old rats only had distorted contours of the nerve fibres. After 12 months of diabetes, the axoplasm had large spaces and the myelin was thickened and deformed. The axoplasm of 36-month old rats was normal in appearance; however the myelin sheath was thickened and split into layers. The Schwann cells were vacuolated and irregular in shape. These observations indicate that diabetes results in the early onset of age-like changes in the sciatic nerve. It suggests that the control of hyperglycemia in humans may preserve sciatic nerve structure and function.  相似文献   

20.
This study measured axonal transport of 6-phosphofructokinase (PFK) and aldolase activities in the sciatic nerves of rats with short-term streptozotocin-induced diabetes. The diabetic rats showed deficits in anterograde (69% of controls; p less than 0.001) and retrograde (33% of controls; p less than 0.01) accumulations of PFK activity as well as its content per unit length of unconstricted sciatic nerve (86% of controls; p less than 0.05). There were no accumulation deficits in aldolase activity in the nerves of the diabetic rats, although the activity per unit length of unconstricted nerve was deficient (81% of controls; p less than 0.05). Treatment of diabetic rats with mixed bovine brain gangliosides (10 mg/kg of body weight/day, i.p.) did not affect the deficit in PFK activity in unconstricted nerve (84% of ganglioside-treated controls; p less than 0.01), but all the other defects in enzyme activities were prevented completely. The diabetic rats also showed a reduction of 7% (p less than 0.01) in sciatic nerve dry weight per unit length, which was prevented by ganglioside treatment. In contrast, the reduced motor nerve conduction velocity, accumulation of polyol pathway metabolites, and depletion of myo-inositol, characteristic of untreated short-term diabetes, were unaffected by ganglioside treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号