首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to investigate the role of miR-208 in the invasion and metastasis of pancreatic cancer cells and the underlying molecular mechanism. miR-208 mimic, miR-208 inhibitor and NC were transfected into pancreatic cancer cell line Bxpc3 using liposome. Transwell invasion and scratch assays were used to test cell migratory and invasive abilities. Western blotting and quantitative PCR methods were used to detect E-cadherin, fibronectin and vimentin protein and mRNA expression in pancreatic cancer cell line BxPC3 after transfection by miR-208 mimic, miR-208 inhibitor and NC. Transwell invasion and scratch assays showed that after overexpressing miR-208, pancreatic cancer cell line BxPC3 exhibited enhanced in vitro migratory and invasive abilities, while after downregulating miR-208 expression, cell migratory and invasive abilities were decreased. Western blotting and quantitative PCR showed that after overexpressing miR-208, expression of E-cadherin, an epithelial cell marker, was decreased and expression of fibronectin and vimentin, interstitial cell markers, was increased in pancreatic cancer cell line BxPC3; however, after inhibiting miR-208, increased E-cadherin expression and decreased fibronectin and vimentin expression were observed in pancreatic cancer cell line BxPC3. After overexpressing miR-208, p-AKT and p-GSK-3β expression was altered by activating AKT/GSK-3β/snail signaling pathway. miR-208 induces epithelial to mesenchymal transition of pancreatic cancer cell line BxPC3 by activating AKT/GSK-3β/snail signaling pathway and thereby promotes cell metastasis and invasion.  相似文献   

2.
3.
BACKGROUND: We investigated in vitro whether IL-1beta and TGF-beta1 affect pancreatic cancer cell growth, adhesion to the extracellular matrix and Matrigel invasion. MATERIALS AND METHODS: Adhesion to fibronectin, laminin and type I collagen, and Matrigel invasion after stimulation with saline, IL-1beta and TGF-beta1 were evaluated using three primary and three metastatic pancreatic cancer cell lines. RESULTS: Extracellular matrix adhesion of control cells varied independently of the metastatic characteristics of the studied cell lines, whereas Matrigel invasion of control cells was partly correlated with the in vivo metastatic potential. IL-1beta did not influence extracellular matrix adhesion, whereas it significantly enhanced the invasiveness of three of the six cell lines. TGF-beta1 affected the adhesion of one cell line, and exerted contrasting effects on Matrigel invasion of different cell lines. CONCLUSIONS: IL-1beta enhances the invasive capacity of pancreatic cancer cells, whereas TGF-beta1 has paradoxical effects on pancreatic cancer cells; this makes it difficult to interfere with TGF-beta1 signaling in pancreatic cancer treatment.  相似文献   

4.
Neural invasion by pancreatic cancer cells (PCC) worsens the prognosis and frequently limits curative resection. We established a novel in-vitro model in which T3M4-PCCs were co-cultured with either isolated myenteric plexus cells (MP) or dorsal root ganglia (DRG) of newborn rats within a three-dimensional extracellular matrix gel. The close vicinity of MP or DRG to T3M4-PCCs induced early morphologic changes on T3M4-PCCs at the migration front prior to the migration process with elongated and neurite-targeting PCCs, compared to round and non-grouping at the non-migrating front. T3M4-PCCs built cancer-cell clusters around the DRG or MP, a process which was accelerated by increasing number of T3M4-PCCs or neurons. These findings indicate that neuro-cancer interactions start prior to PCC migration and induce evident changes in cancer and nerve biology. These findings can be reproduced within the introduced 3D in-vitro migration assay which allows investigation in the early pathogenesis of neural PCC invasion.  相似文献   

5.
Perineural invasion (PNI) is a pathologic feature of pancreatic cancer and is associated with poor outcomes, metastasis, and recurrence in pancreatic cancer patients. However, the molecular mechanism of PNI remains unclear. The present study aimed to investigate the mechanism that HGF/c-Met pathway facilitates the PNI of pancreatic cancer. In this study, we confirmed that c-Met expression was correlated with PNI in pancreatic cancer tissues. Activating the HGF/c-Met signaling pathway potentiated the expression of nerve growth factor (NGF) to recruit nerves and promote the PNI. Activating the HGF/c-Met signaling pathway also enhanced the migration and invasion ability of cancer cells to facilitate cancer cells invading nerves. Mechanistically, HGF/c-Met signaling pathway can active the mTOR/NGF axis to promote the PNI of pancreatic cancer. Additionally, we found that knocking down c-Met expression inhibited cancer cell migration along the nerve, reduced the damage of the sciatic nerve caused by cancer cells and protected the function of the sciatic nerve in vivo. Taken together, our findings suggest a supportive mechanism of the HGF/c-Met signaling pathway in promoting PNI by activating the mTOR/NGF axis in pancreatic cancer. Blocking the HGF/c-Met signaling pathway may be an effective target for the treatment of PNI.Subject terms: Pancreatic cancer, Cancer microenvironment  相似文献   

6.
Pancreatic cancer is one of the most lethal malignant tumors due to a late diagnosis and highly invasion and metastasis. Transforming growth factor-β (TGF-β) signaling plays a vital role in the progression of pancreatic cancer. The delicate activity of TGF-β signaling is particular important for the development of aggression and metastasis which must be fine-tuned. Here, we investigated the role of super-enhancers in regulating the expression of TGF-β signaling pathway in pancreatic cancer. TGFBR2 owns the modification of H3K27Ac around the gene in pancreatic cancer cells. Inhibition of BRD4 by JQ1 robustly blocked the expression of TGFBR2 in a dose dependent manner. We successfully mapped a super-enhancer in TGFBR2 by sgRNA. Deletion of the super-enhancer in TGFBR2 (sgTGFBR2-SEΔ) significantly reduced the expression of TGFBR2 in pancreatic cancer cells. TGF-β-induced p-SMAD2/3 was greatly impaired in TGFBR2 super-enhancer deleted cells. Both migration and EMT induced by TGF-β in pancreatic cancer cells were impaired after deleting the super-enhancer of TGFBR2. Our data suggest a novel molecular mechanism by which a super-enhancer regulates TGFBR2, affecting the activity of TGF-β as well as its function in pancreatic cancer progression.  相似文献   

7.
8.
Bone morphogenetic proteins (BMPs) are multifunctional signaling molecules that have gained increasing interest in cancer research. To obtain a systematic view on BMP signaling in pancreatic cancer we first determined the mRNA expression levels of seven BMP ligands (BMP2BMP8) and six BMP specific receptors in pancreatic cancer cell lines and normal pancreatic tissue. BMP receptor expression was seen in all cancer and normal samples. Low expression levels of BMP5 and BMP8 were detected in cancer cells compared to the normal samples, whereas BMP4 expression was elevated in 25% of the cases. The impact of BMP4 and BMP5 signaling on cell phenotype was then evaluated in five pancreatic cancer cell lines. Both ligands suppressed the growth of three cell lines (up to 79% decrease in BMP4-treated PANC-1 cells), mainly due to cell cycle changes. BMP4 and BMP5 concurrently increased cell migration and invasion (maximally a 10.8-fold increase in invaded BMP4-treated PANC-1 cells). The phenotypic changes were typically associated with the activation of the canonical SMAD pathway, although such activation was not observed in the PANC-1 cells. Taken together, BMP4 and BMP5 simultaneously inhibit the growth and promote migration and invasion of the same pancreatic cells and thus exhibit a biphasic role with both detrimental and beneficial functions in pancreatic cancer progression.  相似文献   

9.
Pancreatic cancer is one of the most lethal cancers. Increasing incidence and mortality indicates that there is still much lacking in detection and management of the disease. This is partly due to a lack of specific symptoms during early stages of the disease. Several growth factor receptors have been associated with pancreatic cancer. Here, we have investigated if an RNA interference approach targeted to IGF-IR could be effective and efficient against pancreatic cancer growth and metastasis. For that, we evaluated the effects of IGF-1R inhibition using small interfering RNA (siRNAs) on tumor growth and metastasis in HPAC and PANC-1 pancreatic cancer cell lines. We found that silencing IGF-1R inhibits pancreatic cancer growth and metastasis by blocking key signaling pathways such AKT/PI3K, MAPK, JAK/STAT and EMT. Silencing IGF-1R resulted in an anti-proliferative effect in PANC-1 and HPAC pancreatic cancer cell lines. Matrigel invasion, transwell migration and wound healing assays also revealed a role for IGF-1R in metastatic properties of pancreatic cancer. These results were further confirmed using Western blotting analysis of key intermediates involved in proliferation, epithelial mesenchymal transition, migration, and invasion. In addition, soft agar assays showed that silencing IGF-1R also blocks the colony forming capabilities of pancreatic cancer cells in vitro. Western blots, as well as, flow cytometric analysis revealed the induction of apoptosis in IGF-1R silenced cells. Interestingly, silencing IGF-1R also suppressed the expression of insulin receptor β. All these effects together significantly control pancreatic cancer cell growth and metastasis. To conclude, our results demonstrate the significance of IGF-1R in pancreatic cancer.  相似文献   

10.
Human pancreatic cancer invasion and metastasis have been found to correlate with increased levels of active matrix metalloproteinase 2 (MMP-2). The multifunctional cytokine transforming growth factor beta 1 (TGF-β1) has been shown to increase both secretion of MMP-2 and invasion by several pancreatic cancer cell types. In the present study, we investigated the signaling pathway involved in TGF-β1-promoted MMP-2 secretion and invasion by human pancreatic cancer cells SW1990. Using specific inhibitors, we found that stimulation of these tumor cells with TGF-β1 induced secretion and activation of the collagenase MMP-2, which was required for TGF-β1-stimulated invasion. Our results also indicate that signaling events involved in TGF-β1-enhanced SW1990 invasiveness comprehend activation of Rac1 followed by generation of reactive oxygen species through nicotinamide adenine dinucleotide phosphate-oxidase, activation of nuclear factor-kappa beta, release of interleukin-6, and secretion and activation of MMP-2.  相似文献   

11.
Integrin-linked kinase (ILK) is an ankyrin repeat-containing serine-threonine protein kinase that is involved in the regulation of integrin-mediated processes such as cancer cell proliferation, migration and invasion. In this study, we examined the effect of a lentivirus-mediated knockdown of ILK on the proliferation, migration and invasion of pancreatic cancer (Panc-1) cells. Immunohistochemical staining showed that ILK expression was enhanced in pancreatic cancer tissue. The silencing of ILK in human Panc-1 cells led to cell cycle arrest in the G0/G1 phase and delayed cell proliferation, in addition to down-regulating cell migration and invasion. The latter effects were mediated by up-regulating the expression of E-cadherin, a key protein in cell adhesion. These findings indicate that ILK may be a new diagnostic marker for pancreatic cancer and that silencing ILK could be a potentially useful therapeutic approach for treating pancreatic cancer.  相似文献   

12.
Pancreatic cancer is one of the deadliest cancers due to early rapid metastasis and chemoresistance. Recently, epithelial to mesenchymal transition (EMT) was shown to play a key role in the pathogenesis of pancreatic cancer. To understand the role of caveolin-1 (Cav-1) in EMT, we over-expressed Cav-1 in a pancreatic cancer cell line, Panc 10.05, that does not normally express Cav-1. Here, we show that Cav-1 expression in pancreatic cancer cells induces an epithelial phenotype and promotes cell-cell contact, with increased expression of plasma membrane bound E-cadherin and beta-catenin. Mechanistically, Cav-1 induces Snail downregulation and decreased activation of AKT, MAPK and TGF-beta-Smad signaling pathways. In vitro, Cav-1 expression reduces cell migration and invasion, and attenuates doxorubicin-chemoresistance of pancreatic cancer cells. Importantly, in vivo studies revealed that Cav-1 expression greatly suppresses tumor formation in a xenograft model. Most interestingly, Panc/Cav-1 tumors displayed organized nests of differentiated cells that were totally absent in control tumors. Confirming our in vitro results, these nests of differentiated cells showed reexpression of E-cadherin and beta-catenin at the cell membrane. Thus, we provide evidence that Cav-1 functions as a crucial modulator of EMT and cell differentiation in pancreatic cancer.  相似文献   

13.

Background

Bmi1 is an integral component of the Polycomb Repressive Complex 1 (PRC1) and is involved in the pathogenesis of multiple cancers. It also plays a key role in the functioning of endogenous stem cells and cancer stem cells. Previous work implicated a role for cancer stem cells in the pathogenesis of pancreatic cancer. We hypothesized that Bmi1 plays an integral role in enhancing pancreatic tumorigenicity and the function of cancer stem cells in pancreatic ductal adenocarcinoma.

Methods

We measured endogenous Bmi1 levels in primary human pancreatic ductal adenocarcinomas, pancreatic intraepithelial neoplasias (PanINs) and normal pancreas by immunohistochemistry and Western blotting. The function of Bmi1 in pancreatic cancer was assessed by alteration of Bmi1 expression in several cell model systems by measuring cell proliferation, cell apoptosis, in vitro invasion, chemotherapy resistance, and in vivo growth and metastasis in an orthotopic model of pancreatic cancer. We also assessed the cancer stem cell frequency, tumorsphere formation, and in vivo growth of human pancreatic cancer xenografts after Bmi1 silencing.

Results

Bmi1 was overexpressed in human PanINs, pancreatic cancers, and in several pancreatic cancer cell lines. Overexpression of Bmi1 in MiaPaCa2 cells resulted in increased proliferation, in vitro invasion, larger in vivo tumors, more metastases, and gemcitabine resistance while opposite results were seen when Bmi1 was silenced in Panc-1 cells. Bmi1 was overexpressed in the cancer stem cell compartment of primary human pancreatic cancer xenografts. Pancreatic tumorspheres also demonstrated high levels of Bmi1. Silencing of Bmi1 inhibited secondary and tertiary tumorsphere formation, decreased primary pancreatic xenograft growth, and lowered the proportion of cancer stem cells in the xenograft tissue.

Conclusions

Our results implicate Bmi1 in the invasiveness and growth of pancreatic cancer and demonstrate its key role in the regulation of pancreatic cancer stem cells.  相似文献   

14.
目的:探究Rab11a在胰腺癌中的表达模式及其对肿瘤生长和转移的影响.方法:通过免疫组织化学法、RT-PCR和Western blot检测60例胰腺癌患者的癌组织和癌旁组织中Rab11a的表达.通过对人胰腺癌细胞系PANC1转染靶向Rab11a的小干扰RNA或过表达Rab11a的pcDNA3.1质粒考察Rab11a对细...  相似文献   

15.
Exosomes are small extracellular membrane vesicles important in intercellular communication, with their oncogenic cargo attributed to tumor progression and pre‐metastatic niche formation. To gain an insight into key differences in oncogenic composition of exosomes, human non‐malignant epithelial and pancreatic cancer cell models and purified and characterized resultant exosome populations are utilized. Proteomic analysis reveals the selective enrichment of known exosome markers and signaling proteins in comparison to parental cells. Importantly, valuable insights into oncogenic exosomes (362 unique proteins in comparison to non‐malignant exosomes) of key metastatic regulatory factors and signaling molecules fundamental to pancreatic cancer progression (KRAS, CD44, EGFR) are provided. It is reported that oncogenic exosomes contain factors known to regulate the pre‐metastatic niche (S100A4, F3, ITGβ5, ANXA1), clinically‐relevant proteins which correlate with poor prognosis (CLDN1, MUC1) as well as protein networks involved in various cancer hallmarks including proliferation (CLU, CAV1), invasion (PODXL, ITGA3), metastasis (LAMP1, ST14) and immune surveillance escape (B2M). The presence of these factors in oncogenic exosomes offers an understanding of select differences in exosome composition during tumorigenesis, potential components as prognostic and diagnostic biomarkers in pancreatic cancer, and highlights the role of exosomes in mediating crosstalk between tumor and stromal cells.  相似文献   

16.
Prostate cancer is the second most commonly diagnosed cancer in men worldwide. Little is known about the role of primary cilia in preinvasive and invasive prostate cancer. However, reduced cilia expression has been observed in human cancers including pancreatic cancer, renal cell carcinoma, breast cancer, cholangiocarcinoma, and melanoma. The aim of this study was to characterize primary cilia expression in preinvasive and invasive human prostate cancer, and to investigate the correlation between primary cilia and the Wnt signaling pathway. Human prostate tissues representative of stages of prostate cancer formation (normal prostate, prostatic intraepithelial neoplasia (PIN), and invasive prostate cancer (including perineural invasion)) were stained for ciliary proteins. The frequency of primary cilia was determined. A decrease in the percentage of ciliated cells in PIN, invasive cancer and perineural invasion lesions was observed when compared to normal. Cilia lengths were also measured to indirectly test functionality. Cilia were shorter in PIN, cancer, and perineural invasion lesions, suggesting dysfunction. Primary cilia have been shown to suppress the Wnt pathway. Increased Wnt signaling has been implicated in prostate cancer. Therefore, we investigated a correlation between loss of primary cilia and increased Wnt signaling in normal prostate and in preinvasive and invasive prostate cancer. To investigate Wnt signaling in our cohort, serial tissue sections were stained for β-catenin as a measure of Wnt signaling. Nuclear β-catenin was analyzed and Wnt signaling was found to be higher in un-ciliated cells in the normal prostate, PIN, a subset of invasive cancers, and perineural invasion. Our results suggest that cilia normally function to suppress the Wnt signaling pathway in epithelial cells and that cilia loss may play a role in increased Wnt signaling in some prostate cancers. These results suggest that cilia are dysfunctional in human prostate cancer, and increase Wnt signaling occurs in a subset of cancers.  相似文献   

17.
At diagnosis, the majority of pancreatic cancer patients present with advanced disease when curative resection is no longer feasible and current therapeutic treatments are largely ineffective. An improved understanding of molecular targets for effective intervention of pancreatic cancer is thus urgent. The Met receptor tyrosine kinase is one candidate implicated in pancreatic cancer. Notably, Met is over expressed in up to 80% of invasive pancreatic cancers but not in normal ductal cells correlating with poor overall patient survival and increased recurrence rates following surgical resection. However the functional role of Met signaling in pancreatic cancer remains poorly understood. Here we used RNA interference to directly examine the pathobiological importance of increased Met signaling for pancreatic cancer. We show that Met knockdown in pancreatic tumor cells results in decreased cell survival, cell invasion, and migration on collagen I in vitro. Using an orthotopic model for pancreatic cancer, we provide in vivo evidence that Met knockdown reduced tumor burden correlating with decreased cell survival and tumor angiogenesis, with minimal effect on cell growth. Notably, we report that Met signaling regulates the secretion of the pro-angiogenic chemokine interleukin-8/CXCL8. Our data showing that the interleukin-8 receptors CXCR1 and CXCR2 are not expressed on pancreatic tumor cells, suggests a paracrine mechanism by which Met signaling regulates interleukin-8 secretion to remodel the tumor microenvironment, a novel finding that could have important clinical implications for improving the effectiveness of treatments for pancreatic cancer.  相似文献   

18.
The genetic profile of human pancreatic cancers harbors considerable heterogeneity, which suggests a possible explanation for the pronounced inefficacy of single therapies in this disease. This observation has led to a belief that custom therapies based on individual tumor profiles are necessary to more effectively treat pancreatic cancer. It has recently been discovered that axon guidance genes are affected by somatic structural variants in up to 25% of human pancreatic cancers. Thus far, however, some of these mutations have only been correlated to survival probability and no function has been assigned to these observed axon guidance gene mutations in pancreatic cancer. In this study we established three novel pancreatic cancer cell lines and performed whole genome sequencing to discover novel mutations in axon guidance genes that may contribute to the cancer phenotype of these cells. We discovered, among other novel somatic variants in axon guidance pathway genes, a novel mutation in the PLXNA1 receptor (c.2587G>A) in newly established cell line SB.06 that mediates oncogenic cues of increased invasion and proliferation in SB.06 cells and increased invasion in 293T cells upon stimulation with the receptor’s natural ligand semaphorin 3A compared to wild type PLXNA1 cells. Mutant PLXNA1 signaling was associated with increased Rho-GTPase and p42/p44 MAPK signaling activity and cytoskeletal expansion, but not changes in E-cadherin, vimentin, or metalloproteinase 9 expression levels. Pharmacologic inhibition of the Rho-GTPase family member CDC42 selectively abrogated PLXNA1 c.2587G>A-mediated increased invasion. These findings provide in-vitro confirmation that somatic mutations in axon guidance genes can provide oncogenic gain-of-function signals and may contribute to pancreatic cancer progression.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号