共查询到20条相似文献,搜索用时 0 毫秒
1.
Gradilone A Raimondi C Nicolazzo C Petracca A Gandini O Vincenzi B Naso G Aglianò AM Cortesi E Gazzaniga P 《Journal of cellular and molecular medicine》2011,15(5):1066-1070
Circulating tumour cells (CTCs) are independent predictor of prognosis in metastatic breast cancer. Nevertheless, in one third of patients, circulating tumour cells are undetected by conventional methods. Aim of the study was to assess the prognostic value of circulating tumour cells expressing mesenchymal markers in metastatic breast cancer patients. We isolated CTC from blood of 55 metastatic breast cancer patients. CTC were characterized for cytokeratins and markers of epithelial mesenchymal transition. The gain of mesenchymal markers in CTC was correlated to prognosis of patients in a follow-up of 24 months. The presence of mesenchymal markers on CTC more accurately predicted worse prognosis than the expression of cytokeratins alone. Because of the frequent loss of epithelial antigens by CTC, assays targeting epithelial antigens may miss the most invasive cell population. Thus, there is an urgent need to improve detection methods to identify CTC which undergone epithelial mesenchymal transition program. 相似文献
2.
Dandan Zhang Liu Yang Xue Liu Jiujiao Gao Tingjiao Liu Qiu Yan Xuesong Yang 《Journal of cellular physiology》2020,235(4):3626-3633
Epithelial cell adhesion molecule (EpCAM), which is a transmembrane glycoprotein, is related to tumor progression. We demonstrated that EpCAM plays important roles in proliferation, apoptosis, and metastasis during breast cancer (BC) progression. But the role of N-glycosylation in EpCAM in tumor aggressiveness is not clear. Here, we evaluated the role of N-glycosylation of EpCAM in stemness and epithelial–mesenchymal transition (EMT) characteristics. EpCAM overexpression increases the expression of stemness markers (NANOG,SOX2, and OCT4) and EMT markers (N-cadherin and vimentin) under the condition of hypoxia in BC. Knockdown of EpCAM and mutation of N-glycosylation of EpCAM maintained in severe hypoxia lead to a significant reduction of stemness/EMT markers. In addition, we found that N-glycosylation of EpCAM is a crucial factor during this process. This demonstrates that EpCAM has a novel regulatory role in stemness/EMT dependence of hypoxia-inducible factor 1-alpha via regulating nuclear factor kappa B in BC cells. Hence, our study reveals EpCAM glycosylation modification as a new regulator of stemness/EMT under hypoxic in BC and points out EpCAM as a potential therapeutic target. 相似文献
3.
Li Jiang Dongxu He Dantong Yang Zhen Chen Qiongxi Pan Aiqin Mao Yanfei Cai Xiyuan Li Hui Xing Mei Shi Yun Chen Iain C. Bruce Teng Wang Linfang Jin Xiaowei Qi Dong Hua Jian Jin Xin Ma 《FEBS letters》2014
To investigate the role of microRNAs in the development of chemoresistance and related epithelial–mesenchymal transition (EMT), we examined the effect of miR-489 in adriamycin (ADM)-resistant human breast cancer cells (MCF-7/ADM). MiR-489 was significantly suppressed in MCF-7/ADM cells compared with chemosensitive parental control MCF-7/WT cells. Forced-expression of miR-489 reversed chemoresistance. Furthermore, Smad3 was identified as the target of miR-489 and is highly expressed in MCF-7/ADM cells. Forced expression of miR-489 both inhibited Smad3 expression and Smad3 related EMT properties. Finally, the interactions between Smad3, miR-489 and EMT were confirmed in chemoresistant tumor xenografts and clinical samples, indicating their potential implication for treatment of chemoresistance. 相似文献
4.
The aim of this study was to investigate whether transforming growth factor-beta1 (TGF-beta1) could induce alveolar epithelial to mesenchymal transition (EMT) in vitro. Alveolar epithelial cells (AECs) from SD rats were isolated by elastase cell dispersion and IgG panning. Expression of alpha-smooth muscle actin (alpha-SMA) was assayed using Western blotting and immunostaining analysis. Morphological changes, the markers of epithelial cell (E-cadherin), and stress fiber by actin reorganization were detected by an indirect immunostaining. The contents of collagen I were determined by spectrophotometry. The levels of endogenous TGF-beta1 were measured with ELISA. Incubation of AECs with TGF-beta1 (0.1 approximately 10 ng/mL) induced abundant expression of alpha-SMA protein, and alpha-SMA expression in AECs reached a plateau when TGF-beta1 was > 3 ng/mL. Furthermore, we found that TGF-beta1 (3 ng/mL) exposure of AECs induced an authentic EMT characterized by abundant expression of alpha-smooth muscle actin, transformation of myofibroblastic morphology, increased formation of stress fiber by actin reorganization, and loss of epithelial marker E-cadherin. Meanwhile, significant increase in the levels of collagen I from 32.0 +/- 6.6 mg/g in control to 98 +/- 10.8 mg/g in TGF-beta1-treated group was found over a 72 h incubation period. Moreover, following stimulated by TGF-beta1 (3 ng/mL), a marked and time-dependent increase in endogenous TGF-beta1 released from AECs was observed. At time points 72 h, TGF-beta1 release mounted to 3451 pg/ml, which was much enough to induce EMT in vitro. These results demonstrated that AECs, under stimulation of TGF-beta1, underwent a conversion process into myofibroblasts in vitro. 相似文献
5.
Andrew J. Fritz Deli Hong Joseph Boyd Jason Kost Kristiaan H. Finstaad Mark P. Fitzgerald Sebastian Hanna Alqassem H. Abuarqoub Miles Malik John Bushweller Coralee Tye Prachi Ghule Jonathan Gordon Seth Frietze Sayyed K. Zaidi Jane B. Lian Janet L. Stein Gary S. Stein 《Journal of cellular physiology》2020,235(10):7261-7272
Breast cancer stem cells (BCSCs) are competent to initiate tumor formation and growth and refractory to conventional therapies. Consequently BCSCs are implicated in tumor recurrence. Many signaling cascades associated with BCSCs are critical for epithelial-to-mesenchymal transition (EMT). We developed a model system to mechanistically examine BCSCs in basal-like breast cancer using MCF10AT1 FACS sorted for CD24 (negative/low in BCSCs) and CD44 (positive/high in BCSCs). Ingenuity Pathway Analysis comparing RNA-seq on the CD24−/low versus CD24+/high MCF10AT1 indicates that the top activated upstream regulators include TWIST1, TGFβ1, OCT4, and other factors known to be increased in BCSCs and during EMT. The top inhibited upstream regulators include ESR1, TP63, and FAS. Consistent with our results, many genes previously demonstrated to be regulated by RUNX factors are altered in BCSCs. The RUNX2 interaction network is the top significant pathway altered between CD24−/low and CD24+/high MCF10AT1. RUNX1 is higher in expression at the RNA level than RUNX2. RUNX3 is not expressed. While, human-specific quantitative polymerase chain reaction primers demonstrate that RUNX1 and CDH1 decrease in human MCF10CA1a cells that have grown tumors within the murine mammary fat pad microenvironment, RUNX2 and VIM increase. Treatment with an inhibitor of RUNX binding to CBFβ for 5 days followed by a 7-day recovery period results in EMT suggesting that loss of RUNX1, rather than increase in RUNX2, is a driver of EMT in early stage breast cancer. Increased understanding of RUNX regulation on BCSCs and EMT will provide novel insight into therapeutic strategies to prevent recurrence. 相似文献
6.
The incidence of gallbladder cancer (GBC) is relatively rare but a high degree of malignancy. The migration and invasion potential of GBC severely affects the prognosis of patients with GBC. Glycochenodeoxycholate (GCDC) is one of the most important components in GBC-associated microenvironment. However, the role of GCDC in the metastatic feature of GBC cells is not fully understood. First, the results of this study found that GCDC could effectively enhance the metastasis of GBC cells. Furthermore, GCDC could lead to the enhancement of epithelial to mesenchymal transition (EMT) phenotype in GBC cells, which is concerned to be an important mechanism of tumor metastasis. Further studies showed that GCDC treatment induced the upregulation of matrix metalloproteinase-3 (MMP3), MMP9, and SOCS3/JAK2/p-STAT3 signal pathway in GBC cells, which could regulate the level of EMT. Beside that, we also found the positive expression of farnesoid X receptor (FXR) in GBC cells and inhibition of FXR could significantly block the effect of GCDC on the metastasis of GBC cells. These results indicated that GCDC promoted GBC cells metastasis by enhancing the level of EMT and inhibition of FXR could significantly block the effect of GCDC. On one hand, FXR might be an indicator for predicting the metastasis of patient with GBC. On the other hand, FXR might serve as a potential antimetastasis target in GBC therapy. 相似文献
7.
目的:探讨环状GMP-AMP合成酶(cGAS)高表达对乳腺癌MCF7细胞发生上皮间质转化(EMT)的影响。方法:构建稳定高表达cGAS的慢病毒载体并转染MCF7细胞;转染后细胞分别培养12 h,24 h,48 h,72 h,每组实验重复三次,采用MTT检测cGAS对MCF7细胞增殖的影响; transwell法检测高表达cGAS对MCF7细胞迁移能力的影响;蛋白免疫印迹(Western blot)法分析EMT相关蛋白E-cadherin和N-cadherin的表达情况。结果:与对照组比较,cGAS上调后MCF7细胞增殖能力显著增强(P<0.05);细胞形态学观察显示cGAS上调后诱导MCF7细胞EMT发生,细胞形态由鹅卵石样变为梭形; transwell实验结果显示,cGAS上调导致MCF7细胞迁移能力增强(P<0.05); Western blot结果表明,cGAS上调后上皮标记蛋白E-cadherin表达下降(P<0.05),间质标记蛋白N-cadherin表达增加(P<0.05)。结论:cGAS上调可增强乳腺癌细胞的增殖和迁移能力,诱导乳腺癌细胞EMT发生... 相似文献
8.
miR‐655 suppresses epithelial‐to‐mesenchymal transition by targeting Prrx1 in triple‐negative breast cancer 下载免费PDF全文
Zhi‐Dong Lv Bin Kong Xiang‐Ping Liu Li‐Ying Jin Qian Dong Fu‐Nian Li Hai‐Bo Wang 《Journal of cellular and molecular medicine》2016,20(5):864-873
Triple‐negative breast cancer (TNBC) is a highly aggressive breast cancer subtype that lacks effective targeted therapies. The epithelial‐to‐mesenchymal transition (EMT) is a key contributor in the metastatic process. In this study, we found that miR‐655 was down‐regulated in TNBC, and its expression levels were associated with molecular‐based classification and lymph node metastasis in breast cancer. These findings led us to hypothesize that miR‐655 overexpression may inhibit EMT and its associated traits of TNBC. Ectopic expression of miR‐655 not only induced the up‐regulation of cytokeratin and decreased vimentin expression but also suppressed migration and invasion of mesenchymal‐like cancer cells accompanied by a morphological shift towards the epithelial phenotype. In addition, we found that miR‐655 was negatively correlated with Prrx1 in cell lines and clinical samples. Overexpression of miR‐655 significantly suppressed Prrx1, as demonstrated by Prrx1 3′‐untranslated region luciferase report assay. Our study demonstrated that miR‐655 inhibits the acquisition of the EMT phenotype in TNBC by down‐regulating Prrx1, thereby inhibiting cell migration and invasion during cancer progression. 相似文献
9.
10.
Xiang Li Xiaopei Yan Yanli Wang Jingjing Wang Fang Zhou Hong Wang Weiping Xie Hui Kong 《Experimental cell research》2018,362(2):489-497
Silicosis is an incurable and progressive lung disease characterized by chronic inflammation and fibroblasts accumulation. Studies have indicated a vital role for epithelial-mesenchymal transition (EMT) in fibroblasts accumulation. NLRP3 inflammasome is a critical mediator of inflammation in response to a wide range of stimuli (including silica particles), and plays an important role in many respiratory diseases. However, whether NLRP3 inflammasome regulates silica-induced EMT remains unknown. Our results showed that silica induced EMT in human bronchial epithelial cells (16HBE cells) in a dose- and time-dependent manner. Meanwhile, silica persistently activated NLRP3 inflammasome as indicated by continuously elevated extracellular levels of interleukin-1β (IL-1β) and IL-18. NLRP3 inflammasome inhibition by short hairpin RNA (shRNA)-mediated knockdown of NLRP3, selective inhibitor MCC950, and caspase-1 inhibitor Z-YVAD-FMK attenuated silica-induced EMT. Western blot analysis indicated that TAK1-MAPK-Snail/NF-κB pathway involved NLRP3 inflammasome-mediated EMT. Moreover, pirfenidone, a commercially and clinically available drug approved for treating idiopathic pulmonary fibrosis (IPF), effectively suppressed silica-induced EMT of 16HBE cells in line with NLRP3 inflammasome inhibition. Collectively, our results indicate that NLRP3 inflammasome is a promising target for blocking or retarding EMT-mediated fibrosis in pulmonary silicosis. On basis of this mechanism, pirfenidone might be a potential drug for the treatment of silicosis. 相似文献
11.
Koa Hosoki Keigo Kainuma Masaaki Toda Etsuko Harada Ayshwarya-Lakshmi Chelakkot-Govindalayathila Ziaurahman Roeen Mizuho Nagao Corina N. D’Alessandro-Gabazza Takao Fujisawa Esteban C. Gabazza 《Biochemical and biophysical research communications》2014
Epithelial to mesenchymal transition (EMT) is a mechanism by which eosinophils can induce airway remodeling. Montelukast, an antagonist of the cysteinyl leukotriene receptor, can suppress airway remodeling in asthma. The purpose of this study was to evaluate whether montelukast can ameliorate airway remodeling by blocking EMT induced by eosinophils. EMT induced was assessed using a co-culture system of human bronchial epithelial cells and human eosinophils or the eosinophilic leukemia cell lines, Eol-1. Montelukast inhibited co-culture associated morphological changes of BEAS-2b cells, decreased the expression of vimentin and collagen I, and increased the expression of E-cadherin. Montelukast mitigated the rise of TGF-β1 production and Smad3 phosphorylation. Co-culture of human eosinophils with BEAS-2B cells significantly enhanced the production of CysLTs compared with BEAS-2B cells or eosinophils alone. The increase of CysLTs was abolished by montelukast pre-treatment. Montelukast had similar effects when co-culture system of Eol-1 and BEAS-2B was used. This study showed that montelukast suppresses eosinophils-induced EMT of airway epithelial cells. This finding may explain the mechanism of montelukast-mediated amelioration of airway remodeling in bronchial asthma. 相似文献
12.
Akshita B. Bhatt Thomas D. Wright Van Barnes Suravi Chakrabarty Margarite D. Matossian Erin Lexner Deniz A. Ucar Lucio Miele Patrick T. Flaherty Matthew E. Burow Jane E. Cavanaugh 《Translational oncology》2021,14(6):101046
The epithelial to mesenchymal transition (EMT) is characterized by a loss of cell polarity, a decrease in the epithelial cell marker E-cadherin, and an increase in mesenchymal markers including the zinc-finger E-box binding homeobox (ZEB1). The EMT is also associated with an increase in cell migration and anchorage-independent growth. Induction of a reversal of the EMT, a mesenchymal to epithelial transition (MET), is an emerging strategy being explored to attenuate the metastatic potential of aggressive cancer types, such as triple-negative breast cancers (TNBCs) and tamoxifen-resistant (TAMR) ER-positive breast cancers, which have a mesenchymal phenotype. Patients with these aggressive cancers have poor prognoses, quick relapse, and resistance to most chemotherapeutic drugs. Overexpression of extracellular signal-regulated kinase (ERK) 1/2 and ERK5 is associated with poor patient survival in breast cancer. Moreover, TNBC and tamoxifen resistant cancers are unresponsive to most targeted clinical therapies and there is a dire need for alternative therapies.In the current study, we found that MAPK3, MAPK1, and MAPK7 gene expression correlated with EMT markers and poor overall survival in breast cancer patients using publicly available datasets. The effect of ERK1/2 and ERK5 pathway inhibition on MET was evaluated in MDA-MB-231, BT-549 TNBC cells, and tamoxifen-resistant MCF-7 breast cancer cells. Moreover, TU-BcX-4IC patient-derived primary TNBC cells were included to enhance the translational relevance of our study. We evaluated the effect of pharmacological inhibitors and lentivirus-induced activation or inhibition of the MEK1/2-ERK1/2 and MEK5-ERK5 pathways on cell morphology, E-cadherin, vimentin and ZEB1 expression. Additionally, the effects of pharmacological inhibition of trametinib and XMD8-92 on nuclear localization of ERK1/2 and ERK5, cell migration, proliferation, and spheroid formation were evaluated. Novel compounds that target the MEK1/2 and MEK5 pathways were used in combination with the AKT inhibitor ipatasertib to understand cell-specific responses to kinase inhibition. The results from this study will aid in the design of innovative therapeutic strategies that target cancer metastases. 相似文献
13.
Intissar Akalay Bassam Janji Meriem Hasmim Muhammad Zaeem Noman Jean Paul Thiery Fathia Mami-Chouaib Salem Chouaib 《Autophagy》2013,9(7):1104-1106
Epithelial to mesenchymal transition (EMT) has become one of the most exciting fields in cancer biology. While its role in cancer cell invasion, metastasis and drug resistance is well established, the molecular basis of EMT-induced immune escape remains unknown. We recently reported that EMT coordinately regulates target cell recognition and sensitivity to specific lysis. In addition to the well-characterized role for EMT in tumor phenotypic change including a tumor-initiating cell phenotype, we provided evidence indicating that EMT-induced tumor cell resistance to cytotoxic T-lymphocytes (CTLs) also correlates with autophagy induction. Silencing of BECN1 in target cells that have gone through the EMT restored CTL susceptibility to CTL-induced lysis. Although EMT may represent a critical target for the development of novel immunotherapy approaches, a more detailed understanding of the inter-relationship between EMT and autophagy and their reciprocal regulation will be a key determinant in the rational approach to future tumor immunotherapy design. 相似文献
14.
15.
Robson EJ Khaled WT Abell K Watson CJ 《Differentiation; research in biological diversity》2006,74(5):254-264
Epithelial-to-mesenchymal transition (EMT) is an essential embryogenic and developmental process, characterized by altered cellular morphology, loss of cell adhesion, and gain of migratory ability. Dysregulation of this process has been implicated in tumorigenesis, mediating the acquisition of migratory and invasive phenotypes by tumor cells. Mammary epithelial cells provide an excellent model in which to study the process, being derived from mammary gland tissue that utilizes EMT to facilitate branching morphogenesis through which the developing gland migrates into and invades the fat pad. Inappropriate EMT has been heavily implicated in the progression of ductal hyperplasia and mammary tumor metastasis. We examined the morphological and molecular changes of three murine mammary epithelial cell lines following EMT induction. EMT was induced in the EpH-4 and NMuMG cell lines by transforming growth factor (TGF)-beta1 but not by ethanol, while the KIM-2 cell line was partially resistant to TGF-beta1 but responded fully to ethanol. The response to EMT-inducing reagent was shown to be critically dependent on the time of treatment, with confluent cells failing to respond. Timelapse photography identified increased motility during wound healing in cells pre-treated with EMT-inducing reagent compared with untreated controls. Furthermore, EMT conferred resistance to UV-induced apoptosis. Our data indicate that evaluation of characteristics other than loss and gain of phenotypic markers may be of benefit when assessing EMT, and contribute to the evidence suggesting that inappropriate EMT facilitates the acquisition of resistance to apoptosis, a key characteristic required for tumor survival. 相似文献
16.
Wei Jiang Yan‐Ling Liang Yang Liu Yu‐Yan Chen Shu‐Ting Yang Bi‐Rong Li Ying‐Xian Yu Yansi Lyu Rikang Wang 《Journal of cellular and molecular medicine》2020,24(14):7959-7967
Methyl‐CpG‐binding protein 2 (MeCP2) is an important epigenetic regulator for normal neuronal maturation and brain glial cell function. Additionally, MeCP2 is also involved in a variety of cancers, such as breast, prostate, lung, liver and colorectal. However, whether MeCP2 contributes to the progression of breast cancer remains unknown. In the present study, we investigated the role of MeCP2 in cell proliferation, migration and invasion in vitro. We found that knockdown of MeCP2 inhibited expression of epithelial‐mesenchymal transition (EMT)‐related markers in breast cancer cell lines. In conclusion, our study suggests that MeCP2 inhibits proliferation and invasion through suppression of the EMT pathway in breast cancer. 相似文献
17.
Gastrulation is a developmental process to generate the mesoderm and endoderm from the ectoderm, of which the epithelial to mesenchymal transition (EMT) is generally considered to be a critical component. Due to increasing evidence for the involvement of EMT in cancer biology, a renewed interest is seen in using in vivo models, such as gastrulation, for studying molecular mechanisms underlying EMT. The intersection of EMT and gastrulation research promises novel mechanistic insight, but also creates some confusion. Here we discuss, from an embryological perspective, the involvement of EMT in mesoderm formation during gastrulation in triploblastic animals. Both gastrulation and EMT exhibit remarkable variations in different organisms, and no conserved role for EMT during gastrulation is evident. We propose that a ‘broken-down’ model, in which these two processes are considered to be a collective sum of separately regulated steps, may provide a better framework for studying molecular mechanisms of the EMT process in gastrulation, and in other developmental and pathological settings. 相似文献
18.
19.
Guoxin Zhang Hongli Li Ruimei Sun Peirui Li Zhiyi Yang Yuanyuan Liu Zhaoyan Wang Yuling Yang Chonggao Yin 《Journal of cellular and molecular medicine》2019,23(5):3271-3279
The triple‐negative breast cancer is the most malignant type of breast cancer. Its pathogenesis and prognosis remain poor despite the significant advances in breast cancer diagnosis and therapy. Meanwhile, long noncoding RNAs (LncRNAs) play a pivotal role in the progression of malignant tumors. In this study, we found that LncRNA‐ZEB2‐AS1 was dramatically up‐regulated in our breast cancer specimens and cells (MDA231), especially in metastatic tumor specimens and highly invasive cells, and high lncRNA‐ZEB2‐AS1 expression is associated with clinicopathologic features and short survival of breast cancer patients. LncRNA‐ZEB2‐AS1 promotes the proliferation and metastasis of MDA231 cells in SCID mice. Thus, it is regarded as an oncogene in triple‐negative breast cancer. It is mainly endo‐nuclear and situated near ZEB2, positively regulating ZEB2 expression and activating the epithelial mesenchymal transition via the PI3K/Akt/GSK3β/Zeb2 signaling pathway. Meanwhile, EGF‐induced F‐actin polymerization in MDA231 cells can be suppressed by reducing lncRNA‐ZEB2‐AS1 expression. The migration and invasion of triple‐negative breast cancer can be altered through cytoskeleton rearrangement. In summary, we demonstrated that lncRNA‐ZEB2‐AS1 is an important factor affecting the development of triple‐negative breast cancer and thus a potential oncogene target. 相似文献
20.
Javad Alizadeh Aleksandra Glogowska James Thliveris Forouh Kalantari Shahla Shojaei Sabine Hombach-Klonisch Thomas Klonisch Saeid Ghavami 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2018,1865(5):749-768
Lung cancer is considered one of the most frequent causes of cancer-related death worldwide and Non-Small Cell Lung Cancer (NSCLC) accounts for 80% of all lung cancer cases. Autophagy is a cellular process responsible for the recycling of damaged organelles and protein aggregates. Transforming growth factor beta-1 (TGFβ1) is involved in Epithelial to Mesenchymal Transition (EMT) and autophagy induction in different cancer models and plays an important role in the pathogenesis of NSCLC. It is not clear how autophagy can regulate EMT in NSCLC cells. In the present study, we have investigated the regulatory role of autophagy in EMT induction in NSCLC and show that TGFβ1 can simultaneously induce both autophagy and EMT in the NSCL lines A549 and H1975. Upon chemical inhibition of autophagy using Bafilomycin-A1, the expression of the mesenchymal marker vimentin and N-cadherin was reduced. Immunoblotting and immunocytochemistry (ICC) showed that the mesenchymal marker vimentin was significantly downregulated upon TGFβ1 treatment in ATG7 knockdown cells when compared to corresponding cells treated with scramble shRNA (negative control), while E-cadherin was unchanged. Furthermore, autophagy inhibition (Bafilomycin A1 and ATG7 knockdown) decreased two important mesenchymal functions, migration and contraction, of NSCLC cells upon TGFβ1 treatment. This study identified a crucial role of autophagy as a potential positive regulator of TGFβ1-induced EMT in NSCLC cells and identifies inhibitors of autophagy as promising new drugs in antagonizing the role of EMT inducers, like TGFβ1, in the clinical progression of NSCLC. 相似文献