首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Tamoxifen treatment is important assistant for estrogen-receptor-positive breast cancer (BRCA) after resection. This study aimed to identify signatures for predicting the prognosis of patients with BRCA after tamoxifen treatment. Data of gene-specific DNA methylation (DM), as well as the corresponding clinical data for the patients with BRCA, were obtained from The Cancer Genome Atlas and followed by systematic bioinformatics analyses. After mapping these DM CPG sites onto genes, we finally obtained 352 relapse-free survival (RFS) associated DM genes, with which 61,776 gene pairs were combined, including 1,614 gene pairs related to RFS. An 11 gene-pair signature was identified to cluster the 189 patients with BRCA into the surgical low-risk group (136 patients) and high-risk group (53 patients). Then, we further identified a tamoxifen-predictive signature that could classify surgical high-risk patients with significant differences on RFS. Combining surgical-only prognostic signature and tamoxifen-predictive signature, patients were clustered into surgical-only low-risk group, tamoxifen nonbenefit group, and tamoxifen benefit group. In conclusion, we identified that the gene pair PDHA2–APRT could serve as a potential prognostic biomarker for patients with BRCA after tamoxifen treatment.  相似文献   

2.
Breast cancer, the most common cancer in women worldwide, is associated with high mortality. The long non-coding RNAs (lncRNAs) with a little capacity of coding proteins is playing an increasingly important role in the cancer paradigm. Accumulating evidences demonstrate that lncRNAs have crucial connections with breast cancer prognosis while the studies of lncRNAs in breast cancer are still in its primary stage. In this study, we collected 1052 clinical patient samples, a comparatively large sample size, including 13 159 lncRNA expression profiles of breast invasive carcinoma (BRCA) from The Cancer Genome Atlas database to identify prognosis-related lncRNAs. We randomly separated all of these clinical patient samples into training and testing sets. In the training set, we performed univariable Cox regression analysis for primary screening and played the model for Robust likelihood-based survival for 1000 times. Then 11 lncRNAs with a frequency more than 600 were selected for prediction of the prognosis of BRCA. Using the analysis of multivariate Cox regression, we established a signature risk-score formula for 11 lncRNA to identify the relationship between lncRNA signatures and overall survival. The 11 lncRNA signature was validated both in the testing and the complete set and could effectively classify the high-/low-risk group with different OS. We also verified our results in different stages. Moreover, we analyzed the connection between the 11 lncRNAs and the genes of ESR1, PGR, and Her2, of which protein products (ESR, PGR, and HER2) were used to classify the breast cancer subtypes widely. The results indicated correlations between 11 lncRNAs and the gene of PGR and ESR1. Thus, a prognostic model for 11 lncRNA expression was developed to classify the BRAC clinical patient samples, providing new avenues in understanding the potential therapeutic methods of breast cancer.  相似文献   

3.
4.
Glioblastoma multiforme (GBM) is a highly malignant brain tumor. We explored the prognostic gene signature in 443 GBM samples by systematic bioinformatics analysis, using GSE16011 with microarray expression and corresponding clinical data from Gene Expression Omnibus as the training set. Meanwhile, patients from The Chinese Glioma Genome Atlas database (CGGA) were used as the test set and The Cancer Genome Atlas database (TCGA) as the validation set. Through Cox regression analysis, Kaplan-Meier analysis, t-distributed Stochastic Neighbor Embedding algorithm, clustering, and receiver operating characteristic analysis, a two-gene signature (GRIA2 and RYR3) associated with survival was selected in the GSE16011 dataset. The GRIA2-RYR3 signature divided patients into two risk groups with significantly different survival in the GSE16011 dataset (median: 0.72, 95% confidence interval [CI]: 0.64-0.98, vs median: 0.98, 95% CI: 0.65-1.61 years, logrank test P < .001), the CGGA dataset (median: 0.84, 95% CI: 0.70-1.18, vs median: 1.21, 95% CI: 0.95-2.94 years, logrank test P = .0017), and the TCGA dataset (median: 1.03, 95% CI: 0.86-1.24, vs median: 1.23, 95% CI: 1.04-1.85 years, logrank test P = .0064), validating the predictive value of the signature. And the survival predictive potency of the signature was independent from clinicopathological prognostic features in multivariable Cox analysis. We found that after transfection of U87 cells with small interfering RNA, GRIA2 and RYR3 influenced the biological behaviors of proliferation, migration, and invasion of glioblastoma cells. In conclusion, the two-gene signature was a robust prognostic model to predict GBM survival.  相似文献   

5.
6.
7.
8.
Long noncoding RNAs (lncRNAs) consist of 200 nucleotide sequences that play essential roles in different processes, including cell proliferation, and differentiation. There is evidence showing that the dysregulation of lncRNAs promoter of CDKN1A antisense DNA damage-activated RNA (PANDAR) leads to the development and progression in several cancers including colorectal cancer, via p53-dependent manner. This suggests that these lncRNAs may be of value as prognostic indices and a therapeutic target, as a high expression of lncRNAs PANDAR is associated with poor prognosis. Furthermore, modulating lncRNAs PANDAR has been reported to induce apoptosis and inhibit the tumor growth through modulation of cell cycle and epithelial-mesenchymal transition (EMT) pathway. The aim of the current review was to provide an overview of the prognostic and therapeutic values of lncRNAs PANDAR in colorectal cancer  相似文献   

9.
10.
Autophagy-related long non-coding RNAs (lncRNAs) disorders are related to the occurrence and development of breast cancer. The purpose of this study is to explore whether autophagy-related lncRNA can predict the prognosis of breast cancer patients. The autophagy-related lncRNAs prognostic signature was constructed by Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression. We identified five autophagy-related lncRNAs (MAPT-AS1, LINC01871, AL122010.1, AC090912.1, AC061992.1) associated with prognostic value, and they were used to construct an autophagy-related lncRNA prognostic signature (ALPS) model. ALPS model offered an independent prognostic value (HR = 1.664, 1.381-2.006), where this risk score of the model was significantly related to the TNM stage, ER, PR and HER2 status in breast cancer patients. Nomogram could be utilized to predict survival for patients with breast cancer. Principal component analysis and Sankey Diagram results indicated that the distribution of five lncRNAs from the ALPS model tends to be low-risk. Gene set enrichment analysis showed that the high-risk group was enriched in autophagy and cancer-related pathways, and the low-risk group was enriched in regulatory immune-related pathways. These results indicated that the ALPS model composed of five autophagy-related lncRNAs could predict the prognosis of breast cancer patients.  相似文献   

11.
Currently, traditional predictors of prognosis (tumor size, nodal status, progesterone receptor [PR], estrogen receptor [ER], or human epidermal growth factor receptor-2 [HER2]) are insufficient for precise survival prediction for triple-negative breast cancer (TNBC). Long noncoding RNAs (lncRNAs) have been observed to exert critical functions in cancer, including in TNBC. Nevertheless, systematically tracking expression-based lncRNA biomarkers based on the sequence data for the prediction of prognosis in TNBC has not yet been investigated. To ascertain whether biomarkers exist that can distinguish TNBC from adjacent normal tissue or nTNBC, we implemented a comprehensive analysis of lncRNA expression profiles and clinical data of 1097 BC samples from The Cancer Genome Atlas database. A total of 1510 differentially expressed lncRNAs in normal and TNBC samples were extracted. Similarly, 672 differentially expressed lncRNAs between nTNBC and TNBC samples were detected. The receiver operating characteristic curve analysis indicated that three upregulated lncRNAs (AC091043.1, AP000924.1, and FOXCUT) may be of strong diagnostic value for predicting the existence of TNBC in the training and validation sets (area under the curve (AUC > 0.85). Kaplan-Meier analysis demonstrated that the other three lncRNAs (AC010343.3, AL354793.1, and FGF10-AS1) were associated with the prognosis of TNBC patients (P < 0.05). We used the three overall survival (OS)-related lncRNAs to establish a three-lncRNA signature. Multivariate Cox regression analysis suggested that the three-lncRNA signature was a prognostic factor independent of other clinical variables ( P < 0.01) for predicting OS in TNBC patients that could be utilized to classify patients into high- or low-risk subgroups. Our results might provide efficient signatures for clinical diagnosis and prognostic evaluation of TNBC.  相似文献   

12.
Circular RNAs (circRNAs) were recently discovered as a looped subset of competing endogenous RNAs, with an ability to regulate gene expression by microRNA sponging. There are several studies on their potential roles in cancer development, such as colorectal cancer and basal cell carcinoma. However, there is still a significant gap in the knowledge about circRNA functions in breast cancer (BC) progression. The current study systematically reviewed circRNA biogenesis and their potential roles as a novel biomarker in BC on published studies of the MEDLINE®/PubMed, Cochrane®, and Scopus® databases. The obtained results showed a general dysregulation of circRNAs expression in BC cells with a cell-type and stage-specific manner. The potential connection between circRNAs and BC cell proliferation, apoptosis, metastasis, and chemotherapy sensitivity and resistance were discussed.  相似文献   

13.
14.
15.
16.
17.
18.
Bladder urothelial carcinoma is a malignant tumor with a high incidence in the uropoietic system. Considerable studies have shown that long noncoding RNA (lncRNA) plays an important role in the development and progression of bladder urothelial carcinoma. In this study, the lncRNA expression and clinical data of 377 bladder urothelial carcinoma patients were obtained from The Cancer Genome Atlas database and differentially expressed lncRNAs in cancer and normal groups were evaluated. Univariate COX and multivariate COX regression analyses of prognosis were performed on differentially expressed lncRNAs in the training data sets, six prognosis-related lncRNAs (LINC02195, LINC01484, LINC01468, SMC2-AS1, AC011298.1, and PTPRD-AS1) were assessed, and a six-lncRNA signature was constructed. The predictive capability of this six-lncRNA signature was validated in the testing data sets and entire data sets. The prognostic ability of the six-lncRNA signature was independent of other clinical elements after multivariate COX regression and stratified analyses of with other clinical elements. We performed functional enrichment analysis with the six prognosis-related lncRNAs. Results of functional enrichment revealed that these prognosis-related lncRNAs might promote the development and metastasis of bladder urothelial carcinoma. In summary, the six-lncRNA signature that we developed could effectively predict the prognosis of bladder urothelial carcinoma patients. This six-lncRNA signature might be a novel independent prognostic marker of bladder urothelial carcinoma. Moreover, it also provides novel insights into the mechanism of bladder urothelial carcinoma.  相似文献   

19.
Breast cancer is the most commonly diagnosed cancer that affects women worldwide. This study aimed to investigate the competing endogenous RNAs (ceRNAs) mechanism in breast cancer. Microarray data were downloaded from the University of California Santa Cruz (UCSC) Xena database. The limma package was used to screen the differentially expressed messenger RNAs (DEMs) and differentially expressed long noncoding RNAs (DELs). Subsequently, functional analysis was performed using DAVID tool. After constructing the protein-protein interaction (PPI) network, we identified the major gene modules using the Cytoscape software. Univariate survival analysis in the survival package was performed. Finally, the ceRNA regulatory network was constructed to identify the critical genes. A total of 1380 DEMs and 345 DELs were identified in breast cancer samples compared with normal samples. Functional enrichment analysis showed that DEMs were mainly involved in cell division, and cell cycle. We screened four major gene modules and identified the hub nodes in these functional modules. Several DEMs (including FABP7, C4BPA, and LAMB3) and three long noncoding RNAs (lncRNAs) (LINC00092, SLC26A4.AS1, and COLCA1) exhibited significant correlation with patients' survival outcomes. In the ceRNA network, the lncRNA HOXA-AS2 regulated the expression level of SCN3A by interacting with hsa-miR-106a-5p. Thus, our study investigated the ceRNA mechanism in breast cancer. The results showed that lncRNA HOXA-AS2 might modulate the expression of SCN3A by sponging miR-106a in breast cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号