首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Tumour M2-pyruvate kinase (TUM2-PK) is up-regulated in many human cancers. This study was to evaluate the clinical value of serum TUM2-PK in early-stage non–small cell lung cancer (NSCLC) patients. A total of 162 consecutive early-stage NSCLC patients were enrolled and followed up after tumour resection. Serum TUM2-PK level was detected by enzyme-linked immunosorbent assay (ELISA) in NSCLC patients, 50 benign pulmonary disease patients and 102 healthy controls. The TUM2-PK level in NSCLC patients was higher than that of healthy controls (P < .001) and benign pulmonary disease patients (P < .001). A threshold of 30 U/mL could be used to diagnose early-stage NSCLC with 71.6% sensitivity and 98.0% specificity. The 5-year overall survival rate in patients with high TUM2-PK level was lower than that of patients with low TUM2-PK level (P = .009). Multivariable Cox regression showed that high TUM2-PK level was an independent risk factor for overall survival (HR = 2.595, 95% CI: 1.231-5.474, P = .012). High serum TUM2-PK level could be a potential biomarker for diagnosis and prognosis of early-stage NSCLC patients.  相似文献   

2.
3.
Lung cancer is the leading cause of cancer-related death worldwide, and non–small cell lung cancer (NSCLC) accounts for 85% of lung cancer diagnoses. As an ancient therapy, moxibustion has been used to treat cancer-related symptoms in clinical practice. However, its antitumour effect on NSCLC remains largely unexplored. In the present study, a Lewis lung cancer (LLC) xenograft tumour model was established, and grain-sized moxibustion (gMoxi) was performed at the acupoint of Zusanli (ST36). Flow cytometry and RNA sequencing (RNA-Seq) were used to access the immune cell phenotype, cytotoxicity and gene expression. PK136, propranolol and epinephrine were used for natural killer (NK) cell depletion, β-adrenoceptor blockade and activation, respectively. Results showed that gMoxi significantly inhibited LLC tumour growth. Moreover, gMoxi significantly increased the proportion, infiltration and activation of NK cells, whereas it did not affect CD4+ and CD8+ T cells. NK cell depletion reversed gMoxi-mediated tumour regression. LLC tumour RNA-Seq indicated that these effects might be related to the inhibition of adrenergic signalling. Surely, β-blocker propranolol clearly inhibited LLC tumour growth and promoted NK cells, and gMoxi no longer increased tumour regression and promoted NK cells after propranolol treatment. Epinephrine could inhibit NK cell activity, and gMoxi significantly inhibited tumour growth and promoted NK cells after epinephrine treatment. These results demonstrated that gMoxi could promote NK cell antitumour immunity by inhibiting adrenergic signalling, suggesting that gMoxi could be used as a promising therapeutic regimen for the treatment of NSCLC, and it had a great potential in NK cell–based cancer immunotherapy.  相似文献   

4.
Numerous studies have shown that the estrogen receptor beta (ERβ) and interleukin 6 receptor (IL-6R) had interaction in many tumors, including lung cancer. Previous studies found that ERβ5 exhibits a different biological function compared with the other subtypes of ERβ. Therefore, this study mainly explores the interaction between ERβ5 and IL-6R in the progression of lung cancer. We found that the expression of ERβ5, IL-6 and glycoprotein 130 (GP130) were significantly increased (P < 0.001) and the 5-year survival rate with the co-expression of ERβ5 and GP130 is significantly lower (P = 0.0315) in non-small cell lung cancer (NSCLC) patients. The cell proliferation, invasion, and cell cycle were markedly increased, and the cell apoptotic was markedly inhibited with the concurrent action of ERβ5 and IL-6 in A549 cells (P < 0.05). In addition, the expression of ERβ5, GP130, p-AKT, and p-44/42 MAPK was also significantly increased in A549 cells (P < 0.05). These results indicate that ERβ5 and GP130 can synergistically promote the progression of NSCLC and maybe combined as an independent prognostic factor in patients. In addition, these results also provide a theoretical basis for the combined targeting therapy of ERβ5 and GP130 in NSCLC.  相似文献   

5.
Lung cancer is the leading cause of cancer-related deaths worldwide. Epithelial-mesenchymal transition (EMT) is a major event that drives cancer progression. Here we aim to investigate the role of microRNA, miR-145, in regulating EMT of the highly invasive non–small cell lung cancer (NSCLC). Quantitative real-time polymerase chain reaction analysis indicated that miR-145 was downregulated in cancer tissue compared with that in adjacent normal tissue. NSCLC cell lines, namely H1299, PC7, and SPCA-1, also demonstrated miR-145 downregulation, which is correlated well with their invasive ability, assessed by the Matrigel invasion assay. miR-145 overexpression resulted in downregulation of N-cadherin, and downregulation of vimentin and E-cadherin, suggesting a decreased EMT activity. TargetScan analysis predicted that a binding site exists between miR-145 and an oncogene, ZEB2, which was verified using the dual-luciferase assay. Alteration of miR-145 expression also induced inverse effects on ZEB2 expression, and a negative correlation exists between ZEB2 and miR-145 in human tissues. ZEB2 and miR-145 also exerted antagonizing effects on the invasion of NSCLC cells. Therefore, miR-145 is an important molecule in NSCLC that regulates cancer EMT through targeting ZEB2.  相似文献   

6.
7.
Long noncoding RNAs (lncRNAs) are key players in the development and progression of human cancers. The lncRNA PCAT-1 has been shown to be upregulated in human non–small cell lung cancer (NSCLC); however, its role and molecular mechanisms in NSCLC cell progression remain unclear. Here, we found that the higher expression of PCAT-1 led to a significantly poorer survival time, and multivariate analysis revealed that PCAT-1 was an independent risk factor of prognosis in NSCLC. Furthermore, we also found that the knockdown of PCAT-1 remarkably suppressed cell growth by inducing cell cycle arrest and apoptosis promotion in NSCLC cells. Moreover, the bioinformatics analysis and luciferase reporter assay revealed that PCAT-1 directly bound to the miR-149-5p, which has been reported to act as a tumor suppressor in diverse cancers. In addition, our results confirmed that the tumor-promoting effects of PCAT-1 in NSCLC cells are at least partly through negative modulation of miR-149-5p. Finally, mechanistic investigations showed that PCAT-1 upregulated the expression of miR-149-5p target gene leucine-rich repeats and immunoglobulin (Ig)-like domains 2 (LRIG2) through competitively “spongeing” miR-149-5p. Therefore, we concluded that PCAT-1 may promote the development of NSCLC through the miR-149-5p/LRIG2 axis.  相似文献   

8.
Comment on: Park K, et al. Cell Cycle 2011; 10:2140-50.  相似文献   

9.
Decreased bridging integrator 1 (BIN1) expression has great significance in promoting the progression of malignant tumors. Reduced messenger RNA expression is partly due to aberrant alternative splicing (AS). However, the AS status of BIN1 and its correlation with BIN1 inactivation in non–small cell lung cancer (NSCLC) remains poorly defined. Here we reported that BIN1 inactivation was not related to DNA methylation in NSCLC. Importantly, BIN1 with exon 12A inclusion (BIN1+12A isoform), the most frequent aberrant splicing variant in tumors was also observed in NSCLC, and might be accounted for BIN1 inactivation. Furthermore, we showed that the aberrant splicing of BIN1 was under the control of serine and arginine-rich factor 1 (SRSF1) in NSCLC. In addition, colony formation assay showed that BIN1+12A isoform could abolish the tumor-inhibiting ability of BIN1 in NSCLC cells. Meanwhile, transwell, wound healing and apoptosis experiments demonstrated that the occurrence of BIN1+12A could abrogate the invasion suppressing activity and proapoptotic property of BIN1 in NSCLC. Significantly, we also found that BIN1+12A isoform neutralized the tumor-suppressing functions of BIN1 via affecting its subcellular localization. Altogether, these data revealed an aberrant splicing phenomenon which abated the expression and tumor-inhibiting activity of BIN1 in NSCLC, and the related mechanisms were associated with SRSF1.  相似文献   

10.
11.
The aim of this study was to investigate the roles of microRNA-383 (miRNA-383) in progression of non–small cell lung cancer (NSCLC) and the potential mechanism. The expressions of miR-383 and Wnt1 protein were detected in lung cancer tissues and cells by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analysis. After the transfection of miR-383 mimics, si-Wnt1 or miR-383+Wnt1, the viability and apoptosis of NSCLC cells were detected by cell counting kit-8 and terminal deoxynucleotidyl transferase–mediated dUTP nick-end labeling, respectively. The interaction between miR-383 and Wnt1 was investigated by luciferase activity and Western blot analysis. Cells stably transfected with miR-383 mimics were inoculated into the right axillary of nude mice by subcutaneous injection. The tumor volume and weight were measured, and the expressions of miR-383, Wnt1, β-catenin, and cyclin D1 were detected by qRT-PCR and Western blot analysis. The expression of miR-383 was significantly decreased, and the level of Wnt1 was significantly increased (P < 0.05) in lung cancer tissues and cells. Upregulation of miR-383 or inhibition of Wnt1 expression inhibited the cell viability and induce apoptosis in NSCLC cells. Moreover, Wnt1 was the target gene of miR-383, and its overexpression weakened the regulatory effect of miR-383 on cell viability and apoptosis in NSCLC cells. Besides, the addition of miR-383 decreased the tumor volume and size and inhibited the expressions of Wnt1, β-catenin, and cyclin D1 at the protein level in nude mice. Collectively, miR-383 induced apoptosis and inhibited cell viability as well as tumorigenic capacity in nude mice via regulating the Wnt/β-catenin signaling pathway.  相似文献   

12.
Introduction : Autophagy is a mechanism that is involved in the regulation of cellular life, apoptosis, and stemness while its intervening genes play important functions in various cancers including lung cancer. ATG5 is one of the key genes for the regulation of the autophagy pathway. In this study, our team has investigated the potential relationship between ATG5 gene polymorphism rs2245214 with non–small cell lung cancer (NSCLC) in a subpopulation of patients from southern Iran. In this study, 34 patients with NSCLC (20 males and 14 females [mean age: 12.86 ± 60.47 years]) and 50 healthy subjects (30 males and 20 females [mean age: 13.09 ± 56.62 years]) were studied in terms of the genotype of the ATG5 gene. We used restriction fragment length polymorphism and analyzed the results using SPSS software (v.23). The results revealed that subjects harboring the guanine/cytosine (GC) genotype of the rs2245214 ATG5 gene polymorphism had suffered less from NSCLC, whereas the prevalence of the C-allele of this polymorphism was significantly higher in patients with NSCLC ( P < 0.05). On the basis of the results of logistic regression, the presence of this C-allele may predict the risk of lung cancer ( P value = 0.011; OR, 3.52; 95% CI, 1.33-9.26). This study concludes that the C-allele of the rs2245214 ATG5 gene polymorphism is associated with increased susceptibility to NSCLC, whereas the GC genotype of this polymorphism is associated with decreased risk and might therefore have a protective role in the development of NSCLC.  相似文献   

13.
14.
15.
16.
MicroRNA-125a (miR-125a) is related to the occurrence, development, and prognosis of various cancers according to relevant reports. However, its function role and mechanism in non–small cell lung cancer (NSCLC) is yet to be explored. Herein, we investigated the role and preliminary mechanism of miR-125a in NSCLC. First, miR-125a was noticeably downregulated in NSCLC tissues in contrast to adjacent normal tissues through the real-time quantitative polymerase chain reaction (RT-qPCR) assay. The inverted result was observed on the STAT3 and HAS1 expressions. Moreover, miR-125a was expressed at highest level in A549 among four human NSCLC cell lines. Second, functional studies indicated miR-125a restrained proliferation, invasion, migration, metastasis, and advocated apoptosis of NSCLC cells, but had no obvious effect on cell cycle. Next, results indicated that a target of miR-125a was STAT3 on the basis of prediction and confirmation by the dual-luciferase reporter assay. RT-qPCR and Western blot assays displayed that miR-125a overexpression conspicuously constrained STAT3 expression at messenger RNA and protein levels. Finally, the binding between HAS1 promoter region and STAT3 was predicted by PROMO database analysis and verified by chromatin immunoprecipitation assay, suggesting that STAT3 was bound with the HAS1 promoter regions. STAT3 overexpression exerted positive effects on HAS1 expression at protein and mRNA levels. Additionally, HAS1-related functional studies illustrated HAS1 pronouncedly suppressed the proliferative, invasive, and migratory potential of NSCLC cells in vitro. Collectively, our findings demonstrated that miR-125a prohibited the proliferation, invasion, and migration of NSCLC cells by HAS1 expression reduction as a result of inhibiting STAT3 expression in NSCLC. This study indicated that miR-125a might be of potential or value for NSCLC treatment.  相似文献   

17.
MicroRNAs plays an important role in the ccurrence and development of non–small-cell lung cancer (NSCLC). miR-497-5p has been reported to function as a tumor suppressor in various cancers. However, the role of miR-497-5p in NSCLC remains poorly understood. In this study, we aimed to investigate the biological role and potential molecular mechanism of miR-497-5p in NSCLC. Our results showed that the messenger RNA (mRNA) expression level of miR-497-5p was notably downregulated in human NSCLC tissues and cell lines. miR-497-5p overexpression remarkably inhibited NSCLC cell proliferation and increased cell apoptosis in A549 and H460 cells, whereas inhibition of miR-497-5p had an opposite effect. The ability of cell migration and invasion was inhibited by miR-497-5p overexpression but was increased by miR-497-5p inhibition. Moreover, our findings indicated that SOX5 was a direct target of miR-497-5p. The protein and mRNA expression levels of SOX5 in A549 cells were remarkably inhibited by miR-497-5p overexpression but was upregulated by miR-497-5p inhibition. Furthermore, SOX5 overexpression notably reversed the effect of miR-497-5p mimic on NSCLC cell proliferation, cell apoptosis, cell migration, and invasion. Taken together, these results indicated that miR-497-5p overexpression inhibited NSCLC cell proliferation, migration and invasion, and induced cell apoptosis through inhibiting SOX5 gene expression. It was conceivable that miR-497-5p might serve as a potential molecular target for NSCLC treatment.  相似文献   

18.

Background aims

Cytokine-induced killer (CIK) cells are the most commonly used cellular immunotherapy for multiple tumors. To further confirm whether chemotherapy with CIK cells improves clinical effectiveness and to reveal its optimal use in non–small cell lung cancer (NSCLC), we systematically reevaluated all relevant studies.

Methods

We collected all studies about chemotherapy with CIK cells for NSCLC from the Medline, Embase, Web of Science, China National Knowledge Infrastructure Database (CNKI), Chinese Scientific Journals Full-Text Database (VIP), Wanfang Data, China Biological Medicine Database (CBM), Cochrane Central Register of Controlled Trials (CENTRAL), Chinese clinical trial registry (Chi-CTR), World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) and U.S. clinical trials. We evaluated their quality according to the Cochrane evaluation handbook of randomized controlled trials (RCTs) (version 5.1.0), extracted the data using a standard data extraction form, synthesized the data using meta-analysis and finally rated the evidence quality using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach.

Results

Thirty-two RCTs with 2250 patients were included, and most trials had unclear risk of bias. The merged risk ratios values and their 95% confidence intervals of meta-analysis for objective response rate, disease control rate, 1- and 2-year overall survival rates, 1- and 2-year progression-free survival rates were as following: 1.45 (1.31–1.61), 1.26 (1.16–.37), 1.42 (1.23–1.63), 2.06 (1.36–3.12), 1.93 (1.38–2.69) and 3.30 (1.13–9.67). Compared with chemotherapy alone, all differences were statistically significant. CIK cells could increase the CD3+ T cells, CD3+ CD4+ T cells, NK cells and the ratio of CD4+/CD8+ T cells. The chemotherapy with CIK cells had a lower risk of hematotoxicity, gastrointestinal toxicity, liver injury and a higher fever than that of chemotherapy alone. The evidence quality was “moderate” to “very low.”

Conclusions

The available moderate evidences indicate that chemotherapy with CIK cells, especially autologous CIK cells, can significantly improve the tumor responses, 1- and 2-year overall and progression-free survival rates in patients with advanced NSCLC. This treatment does have a high risk of fever. The optimal use may be treatment with one or two cycles and in combination with vinorelbine and cisplatin, paclitaxel and cisplatin, or docetaxel and cisplatin.  相似文献   

19.
The aim of this study was to investigate the value of serum macrophage inhibitory factor-1 (MIC-1) level in patients with non–small cell lung cancer (NSCLC). Serum samples from 296 patients with NSCLC and 240 healthy controls were collected. The levels of serum MIC-1 were determined by ELISA. The serum MIC-1 levels in NSCLC patients were higher than that of the controls (P <.001). Univariate and multivariate Cox regression analysis showed that serum MIC-1 was an independent prognostic indicator of OS and PFS. Serum MIC-1 is a valuable biomarker for the diagnosis and prognosis of NSCLC.  相似文献   

20.
Non–small-lung cancer (NSCLC) is the leading cause of cancer death. Early detection of NSCLC could pave the way for effective therapies. Analysis of molecular genetic biomarkers in biological fluids has been proposed as a useful tool for cancer diagnosis. Here, we aimed to develop a panel of noncoding RNAs (ncRNAs) in sputum for NSCLC early detection. Expression of 11 ncRNAs were analyzed by real–time polymerase chain reaction in sputum samples of 30 NSCLC patients and 30 sex- and age-matched cancer-free controls. Stability of endogenous microRNAs (miRNAs) in sputum was evaluated after 3 and 6 days at 4°C, 6 months, and 1 year at −80°C. Nine ncRNAs showed significant differences of their expression in sputum between NSCLC patients and controls. A logistic regression model with the best prediction was built based on miR-145, miR-126, and miR-7. The composite of the three miRNAs produced 90% sensitivity and specificity in distinguishing NSCLC patients from the controls. Results indicate that miRNAs could be useful biomarkers based on their stability under various storage conditions and maintain differential changes between cancer and control groups. Moreover, measurement of miRNAs in sputum could be a noninvasive approach for detection of lung cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号