首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 554 毫秒
1.
Chlamydiae are obligate intracellular bacteria, developing inside host cells within chlamydial inclusions. From these inclusions, the chlamydiae secrete proteins into the host cell cytoplasm. A pathway through which secreted proteins can be delivered is the type III secretion system (T3SS). The T3SS is common to several gram-negative bacteria and the secreted proteins serve a variety of functions often related to the modulation of host signalling. To identify new potentially secreted proteins, the cytoplasm was extracted from Chlamydia trachomatis L2-infected HeLa cells, and two-dimensional polyacrylamide gel electrophoresis profiles of [35S]-labelled chlamydial proteins from this extract were compared with profiles of chlamydial proteins from the lysate of infected cells. In this way, CT621 was identified. CT621 is a member of a family of proteins containing a domain of unknown function DUF582 that is only found within the genus Chlamydia . Immunofluorescence microscopy and immunoblotting demonstrated that CT621 is secreted late in the chlamydial developmental cycle and that it is the first chlamydial protein found to be localized within both the host cell cytoplasm and the nucleus. To determine whether CT621 is secreted through the T3SS, an inhibitor of this apparatus was added to the infection medium, resulting in retention of the protein inside the chlamydiae. Hence, the so far uncharacterized CT621 is a new type III secretion effector protein.  相似文献   

2.
《Autophagy》2013,9(1):50-62
Interferon γ (IFNG) is a key host response regulator of intracellular pathogen replication, including that of Chlamydia spp The antichlamydial functions of IFNG manifest in a strictly host, cell-type and chlamydial strain dependent manner. It has been recently shown that the IFNG-inducible family of immunity-related GTPases (IRG) proteins plays a key role in the defense against nonhost adapted chlamydia strains in murine epithelial cells. In humans, IFN-inducible guanylate binding proteins (hGBPs) have been shown to potentiate the antichlamydial effect of IFNG; however, how hGBPs regulate this property of IFNG is unknown. In this study, we identified hGBP1/2 as important resistance factors against C. trachomatis infection in IFNG-stimulated human macrophages. Exogenous IFNG reduced chlamydial infectivity by 50 percent in wild-type cells, whereas shRNA hGBP1/2 knockdown macrophages fully supported chlamydial growth in the presence of exogenous IFNG. hGBP1/2 were recruited to bacterial inclusions in human macrophages upon stimulation with IFNG, which triggered rerouting of the typically nonfusogenic bacterial inclusions for lysosomal degradation. Inhibition of lysosomal activity and autophagy impaired the IFNG-mediated elimination of inclusions. Thus, hGBP1/2 are critical effectors of antichlamydial IFNG responses in human macrophages. Through their capacity to remodel classically nonfusogenic chlamydial inclusions and stimulate fusion with autophagosomes, hGBP1/2 disable a major chlamydial virulence mechanism and contribute to IFNG-mediated pathogen clearance.  相似文献   

3.
This review summarizes the recently published data on the molecular mechanisms of Chlamydiae-host cell interaction, first of all, on chlamydial effector proteins. Such proteins, along with type III transport system proteins, which transfer many effector proteins into the host cytoplasm, are attractive targets for drug therapy of chlamydial infections. The majority of the data concerns two species, Chlamydia trachomatis and Chlamydophila pneumoniae. The C. trachomatis protein TARP, which is presynthesized in elementary bodies, plays an essential role in the initial stages of infection. The pathogen proteins that are involved in the next stage, which is the intracellular inclusion traffic to the centrosome, are C. trachomatis CT229 and C. pneumoniae Cpn0585, which interact with cell Rab GTPases. In C. trachomatis, IncA plays a key role in the fusion of chlamydial inclusions, CT847 modulates the life cycle of the host cell, and LDA3 is essential for the acquisition of nutrients. The protease CPAF and the inclusion membrane proteins IncG and CADD are involved in suppressing apoptosis of infected cells. The proteases CPAF and CT441 and the deubiquitinating protein ChlaDub1 help the pathogen to evade the immune response.  相似文献   

4.
The unfolded protein response (UPR) contributes to chlamydial pathogenesis, as a source of lipids and ATP during replication, and for establishing the initial anti-apoptotic state of host cell that ensures successful inclusion development. The molecular mechanism(s) of UPR induction by Chlamydia is unknown. Chlamydia use type III secretion system (T3SS) effector proteins (e.g, the Translocated Actin-Recruiting Phosphoprotein (Tarp) to stimulate host cell's cytoskeletal reorganization that facilitates invasion and inclusion development. We investigated the hypothesis that T3SS effector-mediated assembly of myosin-II complex produces activated non-muscle myosin heavy chain II (NMMHC-II), which then binds the UPR master regulator (BiP) and/or transducers to induce UPR. Our results revealed the interaction of the chlamydial effector proteins (CT228 and Tarp) with components of the myosin II complex and UPR regulator and transducer during infection. These interactions caused the activation and binding of NMMHC-II to BiP and IRE1α leading to UPR induction. In addition, specific inhibitors of myosin light chain kinase, Tarp oligomerization and myosin ATPase significantly reduced UPR activation and Chlamydia replication. Thus, Chlamydia induce UPR through T3SS effector-mediated activation of NMMHC-II components of the myosin complex to facilitate infectivity. The finding provides greater insights into chlamydial pathogenesis with the potential to identify therapeutic targets and formulations.  相似文献   

5.
Chlamydiae are obligate intracellular bacteria which occupy a non-acidified vacuole (the inclusion) throughout their developmental cycle. Little is known about events leading to the establishment and maintenance of the chlamydial inclusion membrane. To identify chlamydial proteins which are unique to the intracellular phase of the life cycle, an expression library of Chlamydia psittaci DNA was screened with convalescent antisera from infected animals and hyperimmune antisera generated against formalin-killed purified chlamydiae. Overlapping genomic clones were identified which expressed a 39 kDa protein only recognized by the convalescent sera. Sequence analysis of the clones identified two open reading frames (ORFs), one of which (ORF1) coded for a predicted 39 kDa gene product. The ORF1 sequence was amplified and fused to the malE gene of Escherichia coli and antisera were raised against the resulting fusion protein. Immunoblotting with these antisera demonstrated that the 39 kDa protein was present in lysates of infected cells and in reticulate bodies (RBs), but was at the limit of detection in lysates of purified C. psittaci elementary bodies. Fluorescence microscopy experiments demonstrated that this protein was localized in the inclusion membrane of infected HeLa cells, but was not detected on the developmental forms within the inclusion. Because the protein produced by ORF1 is deposited on the inclusion membrane of infected cells, this gene has been designated incA, (inc lusion membrane protein A ) and its gene product, IncA. In addition to the inclusion membrane, these antisera labelled structures that extended from the inclusion over the nucleus or into the cytoplasm of infected cells. Immunoblotting also demonstrated that IncA, in lysates of infected cells, had a migration pattern that seemed indicative of post-translational modification. This pattern was not observed in immunoblots of RBs or in the E. coli expressing IncA. Collectively, these data identify a chlamydial gene which codes for a protein that is released from RB and is localized in the inclusion membrane of infected cells.  相似文献   

6.
Chlamydiaceae are bacterial pathogens that cause diverse diseases in humans and animals. Despite their broad host and tissue tropism, all Chlamydia species share an obligate intracellular cycle of development and have evolved sophisticated mechanisms to interact with their eukaryotic host cells. Here, we have analysed interactions of the zoonotic pathogen Chlamydia psittaci with a human epithelial cell line. We found that C. psittaci recruits the ceramide transport protein (CERT) to its inclusion. Chemical inhibition and CRISPR/Cas9‐mediated knockout of CERT showed that CERT is a crucial factor for C. psittaci infections thereby affecting different stages of the infection including inclusion growth and infectious progeny formation. Interestingly, the uptake of fluorescently labelled sphingolipids in bacteria inside the inclusion was accelerated in CERT‐knockout cells indicating that C. psittaci can exploit CERT‐independent sphingolipid uptake pathways. Moreover, the CERT‐specific inhibitor HPA‐12 strongly diminished sphingolipid transport to inclusions of infected CERT‐knockout cells, suggesting that other HPA‐12‐sensitive factors are involved in sphingolipid trafficking to C. psittaci. Further analysis is required to decipher these interactions and to understand their contributions to bacterial development, host range, tissue tropism, and disease outcome.  相似文献   

7.
Human pathogenic Chlamydia trachomatis have evolved sophisticated mechanisms to manipulate host cell signalling pathways in order to prevent apoptosis. We show here that host cells infected with C. trachomatis resist apoptosis induced by polyI:C, a synthetic double‐stranded RNA that mimics viral infections. Infected cells displayed significantly reduced levels of PARP cleavage, caspase‐3 activation and a decrease in the TUNEL positive population in the presence of polyI:C. Interestingly, the chlamydial block of apoptosis was upstream of the initiator caspase‐8. Processing of caspase‐8 was reduced in infected cells and coincided with a decrease in Bid truncation and downstream caspase‐9 cleavage. Moreover, the enzymatic activity of caspase‐8, measured by a luminescent substrate, was significantly reduced in infected cells. Caspase‐8 inhibition by Chlamydia was dependent on cFlip as knock‐down of cFlip decreased the chlamydial block of caspase‐8 activation and consequently reduced apoptosis inhibition. Our data implicate that chlamydial infection interferes with the host cell's response to viral infections and thereby influences the fate of the cell.  相似文献   

8.
The intracellular bacterial pathogen Chlamydia is sequestered from the host cell cytoplasm by remaining within an inclusion body during its replication cycle. Nevertheless, CD8(+) T cells recognizing Chlamydia Ags in the context of MHC class I molecules are primed during infection. We have recently described derivation of Chlamydia-specific human CD8(+) T cells by using infected dendritic cells as a surrogate system to reflect Chlamydia-specific CD8(+) T cell responses in vivo. These CD8(+) T cell clones recognize chlamydial Ags processed via the conventional class Ia processing pathway, as assessed by treatment of infected APC with lactacystin and brefeldin A, suggesting that the Ags are translocated from the chlamydial inclusion into the host cell cytosol. In this study, outer membrane protein 2 (OmcB) was identified as the Ag recognized by one of these Chlamydia-specific human CD8(+) T cells, and we defined the HLA*A0101-restricted epitope from this Ag. CD8(+) T cell responses to this epitope were present at high frequencies in the peripheral blood of both of two HLA*A0101 donors tested. In vitro chlamydial growth was completely inhibited by the OmcB-specific CD8(+) T cell clone independently of lytic mechanisms. OmcB is a 60-kDa protein that has been postulated to be associated with the Chlamydia outer membrane complex. The subcellular localization of OmcB to the cytosol of infected cells, as determined by conventional MHC class I Ag processing and presentation, suggests the possibility of an additional, cytosolic-associated function for this protein.  相似文献   

9.
Chlamydia trachomatis, an obligate intracellular pathogen, survives within host cells in a special compartment named ‘inclusion’ and takes advantage of host vesicular transport pathways for its growth and replication. Rab GTPases are key regulatory proteins of intracellular trafficking. Several Rabs, among them Rab11 and Rab14, are implicated in chlamydial development. FIP2, a member of the Rab11‐Family of Interacting Proteins, presents at the C‐terminus a Rab‐binding domain that interacts with both Rab11 and Rab14. In this study, we determined and characterized the recruitment of endogenous and GFP‐tagged FIP2 to the chlamydial inclusions. The recruitment of FIP2 is specific since other members of the Rab11‐Family of Interacting Proteins do not associate with the chlamydial inclusions. The Rab‐binding domain of FIP2 is essential for its association. Our results indicate that FIP2 binds to Rab11 at the chlamydial inclusion membrane through its Rab‐binding domain. The presence of FIP2 at the chlamydial inclusion favours the recruitment of Rab14. Furthermore, our results show that FIP2 promotes inclusion development and bacterial replication. In agreement, the silencing of FIP2 decreases the bacterial progeny. C. trachomatis likely recruits FIP2 to hijack host intracellular trafficking to redirect vesicles full of nutrients towards the inclusion.  相似文献   

10.
The chlamydial glycolipid exoantigen, GLXA, is associated with the bacterial membrane, intracellular inclusion, and can also be found secreted into the microenvironment of Chlamydia trachomatis-infected cells. The aim of this study was to investigate the function of GLXA in chlamydial pathogenesis. Pretreatment of HeLa 229 cells with affinity-purified GLXA resulted in a significant enhancement of chlamydial infectivity as determined by inclusion body enumeration. The GLXA-mediated enhancement was shown to be time- and dose-dependent and, more importantly, GLXA-specific, as the effect was abrogated by anti-GLXA antibody. In vitro neutralization assays on HEp-2 cells revealed that an anti-anti-idiotypic antibody to GLXA effectively reduced the infectivity of C. trachomatis, C. pneumoniae, and C. psittaci. In vivo, the co-inoculation of GLXA at the time of C. trachomatis serovar K intravaginal challenge of C3H/HeJ mice resulted in a significant increase in the numbers of shed organisms on days 4, 7, 14, 21, and 28. Taken together, these observations suggest that GLXA, both organism bound and secreted, is important in facilitating the initiation of infection. Received: 12 April 2002 / Accepted: 8 June 2002  相似文献   

11.
To ensure the optimal infectivity on contact with host cells, pathogenic Pseudomonas syringae has evolved a complex mechanism to control the expression and construction of the functional type III secretion system (T3SS) that serves as a dominant pathogenicity factor. In this study, we showed that the hrpF gene of P. syringae pv. averrhoi, which is located upstream of hrpG, encodes a T3SS‐dependent secreted/translocated protein. Mutation of hrpF leads to the loss of bacterial ability on elicitation of disease symptoms in the host and a hypersensitive response in non‐host plants, and the secretion or translocation of the tested T3SS substrates into the bacterial milieu or plant cells. Moreover, overexpression of hrpF in the wild‐type results in delayed HR and reduced t3ss expression. The results of protein–protein interactions demonstrate that HrpF interacts directly with HrpG and HrpA in vitro and in vivo, and protein stability assays reveal that HrpF assists HrpA stability in the bacterial cytoplasm, which is reduced by a single amino acid substitution at the 67th lysine residue of HrpF with alanine. Taken together, the data presented here suggest that HrpF has two roles in the assembly of a functional T3SS: one by acting as a negative regulator, possibly involved in the HrpSVG regulation circuit via binding to HrpG, and the other by stabilizing HrpA in the bacterial cytoplasm via HrpF–HrpA interaction prior to the secretion and formation of Hrp pilus on the bacterial surface.  相似文献   

12.
Chlamydiaceae are obligate intracellular bacteria that cause endemic trachoma, sexually transmitted diseases and respiratory infections. The course of the diseases is determined by local inflammatory immune responses and the propensity of the pathogen to replicate within infected host cells. Both features require energy which is inseparably coupled to oxygen availability in the microenvironment. Hypoxia-inducible factor-1 (HIF-1) regulates crucial genes involved in the adaptation to low oxygen concentrations, cell metabolism and the innate immune response. Here we report that Chlamydia pneumoniae directly interferes with host cell HIF-1alpha regulation in a biphasic manner. In hypoxia, C. pneumoniae infection had an additive effect on HIF-1alpha stabilization resulting in enhanced glucose uptake during the early phase of infection. During the late phase of intracellular chlamydial replication, host cell adaptation to hypoxia was actively silenced by pathogen-induced HIF-1alpha degradation. HIF-1alpha was targeted by the chlamydial protease-like activity factor, which was secreted into the cytoplasm of infected cells. Direct interference with HIF-1alpha stabilization was essential for efficient C. pneumoniae replication in hypoxia and highlights a novel strategy of adaptive pathogen-host interaction in chlamydial diseases.  相似文献   

13.
Toxoplasma and Chlamydia trachomatis are obligate intracellular pathogens that have evolved analogous strategies to replicate within mammalian cells. Both pathogens are known to extensively remodel the cytoskeleton, and to recruit endocytic and exocytic organelles to their respective vacuoles. However, how important these activities are for infectivity by either pathogen remains elusive. Here, we have developed a novel co‐infection system to gain insights into the developmental cycles of Toxoplasma and C. trachomatis by infecting human cells with both pathogens, and examining their respective ability to replicate and scavenge nutrients. We hypothesize that the common strategies used by Toxoplasma and Chlamydia to achieve development results in direct competition of the two pathogens for the same pool of nutrients. We show that a single human cell can harbour Chlamydia and Toxoplasma. In co‐infected cells, Toxoplasma is able to divert the content of host organelles, such as cholesterol. Consequently, the infectious cycle of Toxoplasma progresses unimpeded. In contrast, Chlamydia's ability to scavenge selected nutrients is diminished, and the bacterium shifts to a stress‐induced persistent growth. Parasite killing engenders an ordered return to normal chlamydial development. We demonstrate that C. trachomatisenters a stress‐induced persistence phenotype as a direct result from being barred from its normal nutrient supplies as addition of excess nutrients, e.g. amino acids, leads to substantial recovery of Chlamydia growth and infectivity. Co‐infection of C. trachomatis with slow growing strains of Toxoplasma or a mutant impaired in nutrient acquisition does not restrict chlamydial development. Conversely, Toxoplasma growth is halted in cells infected with the highly virulent Chlamydia psittaci. This study illustrates the key role that cellular remodelling plays in the exploitation of host intracellular resources by Toxoplasma and Chlamydia. It further highlights the delicate balance between success and failure of infection by intracellular pathogens in a co‐infection system at the cellular level.  相似文献   

14.
Cell stress and infection promote the formation of ubiquitinated aggregates in both non-immune and immune cells. These structures are recognised by the autophagy receptor p62/sequestosome 1 and are substrates for selective autophagy. The intracellular growth of Salmonella enterica occurs in a membranous compartment, the Salmonella-containing vacuole (SCV), and is dependent on effectors translocated to the host cytoplasm by the Salmonella pathogenicity island-2 (SPI-2) encoded type III secretion system (T3SS). Here, we show that bacterial replication is accompanied by the formation of ubiquitinated structures in infected cells. Analysis of bacterial strains carrying mutations in genes encoding SPI-2 T3SS effectors revealed that in epithelial cells, formation of these ubiquitinated structures is dependent on SPI-2 T3SS effector translocation, but is counteracted by the SPI-2 T3SS deubiquitinase SseL. In macrophages, both SPI-2 T3SS-dependent aggregates and aggresome-like induced structures (ALIS) are deubiquitinated by SseL. In the absence of SseL activity, ubiquitinated structures are recognized by the autophagy receptor p62, which recruits LC3 and targets them for autophagic degradation. We found that SseL activity lowers autophagic flux and favours intracellular Salmonella replication. Our data therefore show that there is a host selective autophagy response to intracellular Salmonella infection, which is counteracted by the deubiquitinase SseL.  相似文献   

15.
By comparison of proteome profiles of purified Chlamydia pneumoniae and whole lysates of C. pneumoniae infected HEp-2 cells, an N-terminal fragment of the previously uncharacterized chlamydial protein Cpn0796 was identified as a secreted protein. A 38 kDa cleavage product of Cpn0796 was present in infected cells, whereas only the 65 kDa full-length Cpn0796 could be detected in purified Chlamydia. Confocal immunofluorescence microscopy demonstrated that Cpn0796 was localized in the Chlamydia membrane in young inclusions. However, at 36 h post infection and later Cpn0796 was detected in the cytoplasm of C. pneumoniae infected HEp-2 and BHK cells. Furthermore, Cpn0796 was detected in the cytoplasm of infected cells in the lungs of C. pneumoniae infected C57Bl mice. When cleavage was inhibited, Cpn0796 was retained in the chlamydiae. We propose that Cpn0796 is an autotransporter the N-terminal of which is translocated to the host cell cytoplasm. This is the first example of secretion of a Chlamydia autotransporter passenger domain into the host cell cytoplasm. Cpn0796 is specific for C. pneumoniae, where five homologous proteins are encoded by clustered genes. None of these five proteins were found to be secreted.  相似文献   

16.
Crude, soluble, chlamydial hemagglutinin was prepared from allantoic fluid harvested from embryonated chick eggs and the supernatant fluid of mouse L cells infected with eitherChalamydia psittaci strain 6BC orChlamydia trachomatis strain TW-3. Control nonhemagglutinating specimens of uninfected allantoic fluid and mouse L cells were also prepared. The six preparations were separated by ether-ethanol extraction into lipid-rich and lipid-depleted fractions. Complement-fixing activity was found in the lipid-rich (but not in the lipid-depleted) fraction of infected preparations. In contrast, lipid-rich fractions of infected and uninfected preparations had similar agglutinating activity when sensitive erythrocytes of white Leghorn chickens were used. The lipid-rich fraction of infected and uninfected preparations was separated by thin-layer chromatography (TLC) into seven components with similarR f values, hemagglutinating patterns, and chemical composition (lipid, protein, and carbohydrate). The highest hemagglutination titers of normal and infected preparations were found in a TLC fraction with similarR f values and contained lipid, protein, and carbohydrate. This TLC fraction fromC. psittaci 6BC preparations was used in hemagglutination-inhibition studies. The results indicated that chlamydial hemagglutinin extracted by ether-ethanol and separated by TLC contained, in addition to specific hemagglutinin, nonspecific tissue-lipid hemagglutinin(s) identical to that found in normal preparations.  相似文献   

17.

Background  

Type III secretion systems (T3SS) are essential virulence factors of most Gram-negative bacterial pathogens. T3SS deliver effector proteins directly into the cytoplasm of eukaryotic target cells and for this function, the insertion of a subset of T3SS proteins into the target cell membrane is important. These proteins form hetero-oligomeric pores acting as translocon for the delivery of effector proteins. Salmonella enterica is a facultative intracellular pathogen that uses the Salmonella Pathogenicity Island 2 (SPI2)-encoded T3SS to manipulate host cells in order to survive and proliferate within the Salmonella-containing vacuole of host cells. Previous work showed that SPI2-encoded SseB, SseC and SseD act to form the translocon of the SPI2-T3SS.  相似文献   

18.
Enteric bacterial pathogens commonly use a type III secretion system (T3SS) to successfully infect intestinal epithelial cells and survive and proliferate in the host. Enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC; EHEC) colonize the human intestinal mucosa, form characteristic histological lesions on the infected epithelium and require the T3SS for full virulence. T3SS effectors injected into host cells subvert cellular pathways to execute a variety of functions within infected host cells. The EPEC and EHEC effectors that subvert innate immune pathways – specifically those involved in phagocytosis, host cell survival, apoptotic cell death and inflammatory signalling – are all required to cause disease. These processes are reviewed within, with a focus on recent work that has provided insights into the functions and host cell targets of these effectors.  相似文献   

19.
Chlamydiae are obligate intracellular bacteria residing exclusively in host cell vesicles termed inclusions. We have investigated the effects of deferoxamine mesylate (DAM)-induced iron deficiency on the growth of Chlamydia pneumoniae and Chlamydia trachomatis serovar L2. In epithelial cells subjected to iron starvation and infected with either C. pneumoniae or C. trachomatis L2, small inclusions were formed, and the infectivity of chlamydial progeny was impaired. Moreover, for C. trachomatis L2, we observed a delay in homotypic fusion of inclusions. The inhibitory effects of DAM were reversed by adding exogenous iron-saturated transferrin, which restored the production of infectious chlamydiae. Electron microscopy examination of iron-deprived specimens revealed that the small inclusions contained reduced numbers of C. pneumoniae that were mostly reticulate bodies. We have previously reported specific accumulation of transferrin receptors (TfRs) around C. pneumoniae inclusions within cells grown under normal conditions. Using confocal and electron microscopy, we show here a remarkable increase in the amount of TfRs surrounding the inclusions in iron-starved cultures. It has been shown that iron is an essential factor in the growth and survival of C. trachomatis. Here, we postulate that, for C. pneumoniae also, iron is an indispensable element and that Chlamydia may use iron transport pathways of the host by attracting TfR to the phagosome.  相似文献   

20.
Liu H  Bao W  Lin M  Niu H  Rikihisa Y 《Cellular microbiology》2012,14(7):1037-1050
Ehrlichia chaffeensis infects monocytes/macrophages and causes human monocytic ehrlichiosis. To determine the role of type IV secretion (T4S) system in infection, candidates for T4S effectors were identified by bacterial two‐hybrid screening of E. chaffeensis hypothetical proteins with positively charged C‐terminus using E. chaffeensis VirD4 as bait. Of three potential T4S effectors, ECH0825 was highly upregulated early during exponential growth in a human monocytic cell line. ECH0825 was translocated from the bacterium into the host‐cell cytoplasm and localized to mitochondria. Delivery of anti‐ECH0825 into infected host cells significantly reduced bacterial infection. Ectopically expressed ECH0825 also localized to mitochondria and inhibited apoptosis of transfected cells in response to etoposide treatment. In double transformed yeast, ECH0825 localized to mitochondria and inhibited human Bax‐induced apoptosis. Mitochondrial manganese superoxide dismutase (MnSOD) was increased over ninefold in E. chaffeensis‐infected cells, and the amount of reactive oxygen species (ROS) in infected cells was significantly lower than that in uninfected cells. Similarly, MnSOD was upregulated and the ROS level was reduced in ECH0825‐transfected cells. These data suggest that, by upregulating MnSOD, ECH0825 prevents ROS‐induced cellular damage and apoptosis to allow intracellular infection. This is the first example of host ROS levels linked to a bacterial T4S effector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号