首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pancreatic cancer is a serious solid malignant tumor worldwide. Increasing evidence has pointed out that abnormal expressions of long noncoding RNAs are involved in various tumors. Meanwhile, LINC00052 is reported as a famous tumor regulator in several cancers. Nevertheless, the biological role of LINC00052 in pancreatic cancer progression is still unknown. Our study was to explore the specific mechanism of LINC00052 in pancreatic cancer. First, we observed that the LINC00052 was obviously downregulated in several pancreatic cancer cell lines. Overexpression of LINC00052 greatly repressed AsPC-1 and SW1990 cell proliferation, triggered the apoptosis and prevented cell cycle in the G1 phase. For another, AsPC-1 and SW1990 cell migration and invasion capacity were also obviously repressed by LINC00052 upregulation. Moreover, miR-330-3p was elevated in pancreatic cancer cells and can function as a target of LINC00052 confirmed by luciferase reporter and RNA Immunoprecipitation (RIP) experiments. Inhibition of miR-330-3p could depress pancreatic cancer progression while overexpressed miR-330-3p exhibited an opposite process. Finally, our data indicated that the LINC00052 also remarkably suppressed pancreatic tumor growth via modulating miR-330-3p in vivo. To conclude, our study revealed that the LINC00052 might provide a new perspective for pancreatic cancer therapy.  相似文献   

2.
3.
MicroRNA-142-3p (miR-142-3p) was previously investigated in various cancers, whereas, it's role in breast cancer (BC) remains far from understood. In this study, we found that miR-142-3p was markedly decreased both in cell lines and BC tumor tissues. Elevated miR-142-3p expression suppressed growth and metastasis of BC cell lines via gain-of-function assay in vitro and in vivo. Mechanistically, miR-142-3p could regulate the ras-related C3 botulinum toxin substrate 1 (RAC1) expression in protein level, which simultaneously suppressed the epithelial-to-mesenchymal transition related protein levels and the activity of PAK1 phosphorylation, respectively. In addition, rescue experiments revealed RAC1 overexpression could reverse tumor-suppressive role of miR-142-3p. Our results showed miR-142-3p could function as a tumor suppressor via targeting RAC1/PAK1 pathway in BC, suggesting a potent therapeutic target for BC treatment.  相似文献   

4.
5.
6.
Cervical cancer holds one of the highest morbidity and mortality in various types of cancers. It even leads to the most number of cancer-related deaths of women. A lot of research has indicated that the anomalous expression of long noncoding RNAs (lncRNAs) would induce carcinogenesis and is associated with poor prognosis of patients with cancer. However, the function and mechanism of many lncRNAs still call for further research. Tumor Protein P73 Antisense RNA 1 (TP73-AS1) is no exception. LncRNA TP73-AS1 has been found to promote cancer progressions in various cancers. It is upregulated in cervical cancer cells. The proliferation and migration ability of cervical cancer cells can also be boosted by TP73-AS1 in return. Meanwhile, miRNA-329-3p is downregulated in cervical cancer cells and could bind with both TP73-AS1 and ADP Ribosylation Factor 1 (ARF1). TP73-AS1 inhibited miR-329-3p expression while miR-329-3p inhibited ARF1 expression. More importantly, TP73-AS1 can positively regulate ARF1 expression. Based on all these experiments, TP73-AS1 regulates ARF1 expression by competitively binding with miR-329-3p, thus regulating cervical cancer progression. Further rescue assays confirmed TP73-AS1 regulates cervical cell proliferation and migration via miR-329-3p/ARF1. TP73-AS1 might serve as a novel regulator in cervical cancer.  相似文献   

7.
Estrogen receptors (ERs) are involved in the development of many types of malignant tumors, in particular, breast cancer. Among others, ERs affect cell growth, proliferation, and differentiation. The microRNA (miRNA) miR-142-3p has been shown to inhibit carcinogenesis by regulating various cellular processes, including cell cycle progression, cell migration, apoptosis, and invasion. It does so via targeting molecules involved in a range of signaling pathways. We surgically collected 20 ER-positive breast cancer samples, each with matched adjacent normal breast tissue, and measured the expression of miR-142-3p via quantitative real-time polymerase chain reaction (qRT-PCR). Bioinformatics methods, luciferase reporter assay, qRT-PCR, and western blot analysis were used to assess whether miR-142-3p could target ESR1, which encodes the estrogen receptor, in ER-positive breast cancer cells and patient samples. We also restored miRNA expression and performed cell viability, cytotoxicity, and colony formation assays. Western blot analysis and qRT-PCR were used to study the expression of apoptosis and stemness markers. We found that miR-142-3p is downregulated in ER-positive breast cancers. Restoration of miR-142-3p expression in ER-positive breast cancer cells reduced cell viability, induced apoptosis via the intrinsic pathway and decreased both colony formation and the expression of stem cell markers. Bioinformatic analysis predicted miR-142-3p could bind to 3′-untranslated region ESR1 messenger RNA (mRNA). Consistently, we demonstrated that miR-142-3p reduced luciferase activity in ER-positive breast cancer cells, and decreased ESR1 expression in both mRNA and protein levels. The results revealed miR-142-3p and ESR1 expression correlated negatively in ER-positive breast cancer samples. The results suggest miR-142-3p acts as a tumor suppressor via multiple mechanisms. Thus, restoration of miR-142-3p expression, for example, via miRNA replacement therapy, may represent an effective strategy for the treatment of ER-positive breast cancer patients.  相似文献   

8.
9.
Glioma, an aggressive tumor in brain, presents a very poor prognosis. Emerging evidence has demonstrated that dysfunction of long noncoding RNAs (lncRNAs) is closely related to giloma development. However, the roles of lncRNA BLACAT1 in glioma are not unknown. In this study, we utilized in vitro and in vivo experiments to explore the effects of BLACAT1 on glioma cells. BLACAT1 levels were increased in glioma tissues. Upregulation of BLACAT1 showed poor prognosis. Silencing of BLACAT1 markedly repressed glioma proliferation, migration, and invasion, and suppressed glioma growth in vivo. We also illustrated that BLACAT1 worked as the sponge for miR-605-3p and promoted VASP expression. miR-605-3p was downregulated in glioma and repressed glioma proliferation, migration, and invasion. And VASP is upregulated and contributed to glioma progression. Summarily, this study highlights the important roles of BLACAT1/miR-605-3p/VASP axis in glioma progression.  相似文献   

10.
11.

Background

Lung cancer is the leading cause of cancer-related death worldwide. Previous studies revealed that miR-183-5p is frequently involved in various human cancers. However, the exact role of miR-183-5p in regulating the pathogenesis of lung cancer remains unclear.

Method

Bioinformatic analysis, luciferase reporter assay, and Western blotting was used to investigate whether miR-183-5p directly bound to the 3′UTR of PIK3CA and prevented its translation. Furthermore, an si-miR-183-5p and PIK3CA siRNA was used to evaluate whether PIK3CA expression increased and whether cell proliferation, migration and invasion ability were promoted.

Results

miR-183-5p directly bound to the 3′UTR of PIK3CA and prevented its translation. miR-183-5p also acted as a tumor suppressor, and contrary to most studies, its expression was downregulated in lung cancer. Functional studies revealed that overexpression of miR-183-5p reduced cell proliferation, migration, and invasion and that miR-183-5p induced cell cycle arrest and increased cell apoptosis. PIK3CA expression, cell proliferation, migration and invasion ability increased. siRNA-mediated silencing of PIK3CA in lung cancer cells decreased their proliferation and invasive capabilities, suggesting that miR-183-5p inhibited cell proliferation and invasion of lung cancer cells at least partly through downstream targeting of PIK3CA.

Conclusion

Our studies suggest that miR-183-5p may function as a tumor suppressor in lung cancer via the miR-183-5p/PIK3CA regulatory axis and identify a potentially effective therapeutic strategy for lung cancer.  相似文献   

12.
13.
Prostate cancer (PCa) is one of the major health problems of the aging male. The roles of dysregulated microRNAs in PCa remain unclear. In this study, we mined the public published data and found that miR-487a-3p was significantly downregulated in 38 pairs of clinical prostate tumor tissues compared with the normal tissues. We further verified this result by in situ hybridization on tissue chip and quantitative real-time polymerase chain reaction (qRT-PCR) in PCa/normal cells. miR-487a-3p targeting of cyclin D1 (CCND1) was identified using bioinformatics, qRT-PCR and western blot analyses. The cellular proliferation, cell cycle, migration, and invasion were assessed by cell counting kit-8, flow cytometry analysis and transwell assay. We discovered that overexpression of miR-487a-3p suppressed PCa cell growth, migration, invasion by directly targeting CCND1. Knockdown of CCND1 in PCa cells showed similar results. Meanwhile, the expression level of CCND1 was significantly upregulated in the PCa tissues and cell lines, which presented negative correlation with the expression of miR-487a-3p. More important, we demonstrated significantly reduced growth of xenograft tumors of stable miR-487a-3p-overexpressed human PCa cells in nude mice. Taken together, for the first time, our results revealed that miR-487a-3p as a tumor suppressor of PCa could target CCND1. Our finding might reveal miR-487a-3p could be potentially contributed to the pathogenesis and a clinical biomarker or the new potential therapeutic target of PCa.  相似文献   

14.
15.
16.

Object

This study aimed to investigate the role of lncRNA OIP5-AS1 in regulating radioresistance of colorectal cancer (CRC) cells.

Methods

Microarray analysis was used to screen out lncRNAs differentially expressed in radio-resistant CRC cell lines. Expression levels of OIP5-AS1, miR-369-3p and DYRK1A in CRC cell lines were measured by qRT-PCR. Protein expression of DYRK1A was determined by western blot. The target relationships among OIP5-AS1, miR-369-3p and DYRK1A were validated by dual luciferase reporter assay. Impacts of OIP5-AS1 or DYRK1A on CRC cellular activity and apoptosis were investigated by MTT assay, clonogenic survival assay and flow cytometry to analyze OIP5-AS1 or DYRK1A’s effect on radioresistance of CRC cells.

Results

LncRNA OIP5-AS1 and DYRK1A were down-regulated in radio-resistant CRC cell lines. OIP5-AS1 suppressed the expression of miR-369-3p, thus up-regulating DYRK1A, the downstream gene of miR-369-3p. OIP5-AS1 and DYRK1A impaired cell clonogenic survival and promoted cell apoptosis after irradiation, improving radiosensitivity of CRC cells.

Conclusion

LncRNA OIP5-AS1 suppressed cell viability, promoted radio-induced apoptosis, and enhanced the radiosensitivity of CRC cells by regulating DYRK1A expression through miR-369-3p.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号