首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Bmi1 is an integral component of the Polycomb Repressive Complex 1 (PRC1) and is involved in the pathogenesis of multiple cancers. It also plays a key role in the functioning of endogenous stem cells and cancer stem cells. Previous work implicated a role for cancer stem cells in the pathogenesis of pancreatic cancer. We hypothesized that Bmi1 plays an integral role in enhancing pancreatic tumorigenicity and the function of cancer stem cells in pancreatic ductal adenocarcinoma.

Methods

We measured endogenous Bmi1 levels in primary human pancreatic ductal adenocarcinomas, pancreatic intraepithelial neoplasias (PanINs) and normal pancreas by immunohistochemistry and Western blotting. The function of Bmi1 in pancreatic cancer was assessed by alteration of Bmi1 expression in several cell model systems by measuring cell proliferation, cell apoptosis, in vitro invasion, chemotherapy resistance, and in vivo growth and metastasis in an orthotopic model of pancreatic cancer. We also assessed the cancer stem cell frequency, tumorsphere formation, and in vivo growth of human pancreatic cancer xenografts after Bmi1 silencing.

Results

Bmi1 was overexpressed in human PanINs, pancreatic cancers, and in several pancreatic cancer cell lines. Overexpression of Bmi1 in MiaPaCa2 cells resulted in increased proliferation, in vitro invasion, larger in vivo tumors, more metastases, and gemcitabine resistance while opposite results were seen when Bmi1 was silenced in Panc-1 cells. Bmi1 was overexpressed in the cancer stem cell compartment of primary human pancreatic cancer xenografts. Pancreatic tumorspheres also demonstrated high levels of Bmi1. Silencing of Bmi1 inhibited secondary and tertiary tumorsphere formation, decreased primary pancreatic xenograft growth, and lowered the proportion of cancer stem cells in the xenograft tissue.

Conclusions

Our results implicate Bmi1 in the invasiveness and growth of pancreatic cancer and demonstrate its key role in the regulation of pancreatic cancer stem cells.  相似文献   

2.
3.
4.
Pancreatic cancer is one of the most lethal cancers. Increasing incidence and mortality indicates that there is still much lacking in detection and management of the disease. This is partly due to a lack of specific symptoms during early stages of the disease. Several growth factor receptors have been associated with pancreatic cancer. Here, we have investigated if an RNA interference approach targeted to IGF-IR could be effective and efficient against pancreatic cancer growth and metastasis. For that, we evaluated the effects of IGF-1R inhibition using small interfering RNA (siRNAs) on tumor growth and metastasis in HPAC and PANC-1 pancreatic cancer cell lines. We found that silencing IGF-1R inhibits pancreatic cancer growth and metastasis by blocking key signaling pathways such AKT/PI3K, MAPK, JAK/STAT and EMT. Silencing IGF-1R resulted in an anti-proliferative effect in PANC-1 and HPAC pancreatic cancer cell lines. Matrigel invasion, transwell migration and wound healing assays also revealed a role for IGF-1R in metastatic properties of pancreatic cancer. These results were further confirmed using Western blotting analysis of key intermediates involved in proliferation, epithelial mesenchymal transition, migration, and invasion. In addition, soft agar assays showed that silencing IGF-1R also blocks the colony forming capabilities of pancreatic cancer cells in vitro. Western blots, as well as, flow cytometric analysis revealed the induction of apoptosis in IGF-1R silenced cells. Interestingly, silencing IGF-1R also suppressed the expression of insulin receptor β. All these effects together significantly control pancreatic cancer cell growth and metastasis. To conclude, our results demonstrate the significance of IGF-1R in pancreatic cancer.  相似文献   

5.
6.
To identify novel targets in pancreatic cancer cells, we used high-throughput RNAi (HT-RNAi) to select genes that, when silenced, would decrease viability of pancreatic cancer cells. The HT-RNAi screen involved reverse transfecting the pancreatic cancer cell line BxPC3 with a siRNA library targeting 572 kinases. From replicate screens, approximately 32 kinases were designated as hits, of which 22 kinase targets were selected for confirmation and validation. One kinase identified as a hit from this screen was tyrosine kinase nonreceptor 1 (TNK1), a kinase previously identified as having tumor suppressor-like properties in embryonic stem cells. Silencing of TNK1 with siRNA showed reduced proliferation in a panel of pancreatic cancer cell lines. Furthermore, we showed that silencing of TNK1 led to increased apoptosis through a caspase-dependent pathway and that targeting TNK1 with siRNA can synergize with gemcitabine treatment. Despite previous reports that TNK1 affects Ras and NF-κB signaling, we did not find similar correlations with these pathways in pancreatic cancer cells. Our results suggest that TNK1 in pancreatic cancer cells does not possess the same tumor suppressor properties seen in embryonic cells but seems to be involved in growth and survival. The application of functional genomics by using HT-RNAi screens has allowed us to identify TNK1 as a growth-associated kinase in pancreatic cancer cells.  相似文献   

7.
B7-H4 is expressed in a variety of tumor cells and functions as a negative regulator of T cells. However, clarification is needed as to whether B7-H4 mediates tumorigenesis through mechanisms, such as apoptosis, in addition to mediating tumor immune escape. We investigate the mechanisms involved in enhanced oncogenicity and the inhibition of apoptosis by B7-H4 in pancreatic cancer cells. Short interfering RNAs (siRNAs) specific for B7-H4 were evaluated for their ability to knockdown B7-H4 mRNA and protein expression in pancreatic cancer cells and the most effective siRNA was selected for investigating the effect of B7-H4 gene silencing in a number of functional assays. The inhibition of B7-H4 increased cell-cell adhesion and decreased the formation of pseudopodia. It also increased the expression of E-cadherin and decreased the expression of vimentin and CD44. B7-H4 siRNA inhibited cell proliferation, colony formation and migration of pancreatic cancer cells. Moreover, increased apoptosis in pancreatic cancer cells following B7-H4 silencing was demonstrated in vitro by using flow cytometry and in a xenograft tumor model and was associated with increased caspase activity and decreased Erk1/2 phosphorylation both in vitro and in vivo. Loss of B7-H4 function thus prevents tumor growth through many processes, including the induction of apoptosis and inhibition of the Erk1/2 signaling pathway indicating that B7-H4 is a cancer promoter and a potentially important therapeutic target. B7-H4 inhibition might offer an exciting opportunity to inhibit the progression of human pancreatic cancers.  相似文献   

8.
Chmp1A (Chromatin modifying protein 1A/Charged multivesicular protein 1A) is a member of the ESCRT-III (Endosomal Sorting Complex Required for Transport) family that was shown to function in endosome-mediated trafficking via multivesicular body (MVB) formation and sorting. Recent reports suggest that ESCRT complexes are also involved in cell cycle progression and tumor development. Using in vitro and in vivo model systems, we provide evidence that Chmp1A is a novel tumor suppressor, especially in the pancreas. We demonstrated that short hairpin RNA (shRNA) mediated stable silencing of Chmp1A in HEK 293T cells resulted in an increase of anchorage-independent growth in soft agar assay and tumor formation in xenograft assay. To investigate the involvement of Chmp1A in human tumor development we screened human cancer arrays and pancreatic tissue arrays. We discovered that Chmp1A mRNA and protein was reduced and/or altered (protein) in various human pancreatic tumors. To investigate the biological implication of these data, we either over-expressed or silenced Chmp1A in human pancreatic ductal tumor cells (PanC-1) and studied the effect of these manipulations on cell and tumor growth respectively. Stable over-expression of Chmp1A in PanC-1 cells resulted in cell growth inhibition and tumor xenograft inhibition respectively. In contrast, silencing of Chmp1 in PanC-1 cells resulted in the elevation of cell growth in vitro. Mechanistically, over-expression of Chmp1A strongly increased the protein level of P53 and phospho-P53. Taken together, our data indicates that Chmp1A is a novel tumor suppressor, especially in pancreas and that Chmp1A regulates tumor growth potentially through P53 signaling pathway.  相似文献   

9.
In this study, we demonstrated that survivin downregulation with TRAIL expression greatly enhanced the cytotoxic death of pancreatic cancer cells after gemcitabine treatment. Using real-time RT-PCR, we analyzed five survivin shRNAs to identify the best target sequence for suppression of human survivin, with the goal of treating gemcitabine-resistant pancreatic cancer cells. Survivin shRNA 5, corresponding to target 5, showed the greatest reduction in survivin mRNA levels. Furthermore, combined treatment with survivin shRNA-expressing adenovirus with gemcitabine plus TRAIL decreased uncleaved PARP and increased consequent PARP cleavage, which was correlated with the greatest levels of survivin downregulation and cell death. These results indicate that survivin functions as a common mediator of gemcitabine- and TRAIL-induced cell death. Using a nude mouse model implanted with MiaPaCa-2 pancreatic cancer cells, we observed tumor regression induced by an oncolytic adenovirus expressing survivin shRNA and TRAIL plus gemcitabine. Together, our findings provide a strong rationale for treating pancreatic cancer patients with both gemcitabine and oncolytic adenovirus armed with survivin shRNA and TRAIL.  相似文献   

10.
11.
12.
We evaluated the effects of GHRH antagonists on the proliferation of MiaPaCa-2 human pancreatic cancer cells and cAMP signaling in vitro. GHRH antagonists inhibited the proliferation of MiaPaCa-2 cells in vitro in a dose-dependent way and caused a significant elevation in cAMP production. In a superfusion system, short-term exposure of the cells to GHRH antagonists evoked an acute, dose-dependent release of cAMP into the medium. Native GHRH, which stimulates cAMP efflux from pituitary at nanomolar doses, did not influence cAMP release from cultured or superfused MiaPaCa-2 cells even at 10-30 microM. VIP, PACAP, secretin and glucagon also did not influence cell proliferation or cAMP production. Adenylate cyclase activator forskolin (FSK) caused a greater cAMP response, but a smaller antiproliferative effect than GHRH antagonists. Combined treatment with FSK and GHRH antagonist JV-1-38 potentiated the cAMP-inducing effect of FSK, but did not produce a greater inhibition of cell proliferation than JV-1-38 alone. A selective accumulation of radiolabeled GHRH antagonist [(125)I]JV-1-42 in vivo in MiaPaCa-2 carcinoma xenografted into nude mice was also observed. In conclusion, second messengers other than cAMP participate in the signal transduction pathways of GHRH analogs mediated by tumoral GHRH receptors.  相似文献   

13.
Accumulating data suggested that functional expression of Toll-like receptors (TLRs) in tumor cells was involved in tumor progression. Our previous study demonstrated that TLR9 signaling could enhance the tumor progression of human lung cancer cells in vitro and in vivo. We further showed that miR-574-5p was the mostly up-regulated miRNA in human lung cancer cells under TLR9 signaling by miRNA array analysis. Here we characterized the potential role of miRNA-574-5p in enhanced tumor progression induced by TLR9 signaling in human lung cancer. We confirmed that TLR9 signaling effectively elevated the expression of miR-574-5p in human lung cancer cells. Notably, we found that down-regulation of miRNA-574-5p using miR-574-5p inhibitor in vitro or miR-574-5p sponge in vivo significantly abrogated the enhanced tumor progression induced by TLR9 signaling. Further studies showed that miR-574-5p was an important player associated with enhanced tumor progression of human lung cancer cells. Notably, we identified checkpoint suppressor 1 (Ches1) as the dominant direct target for miRNA-574-5p to confer the TLR9 signaling enhanced tumor progression. We revealed that over-expression of Ches1 significantly inhibited the cell cycle entry of human lung cancer cells. Finally, we revealed that the expression of miR-574-5p was positively correlated with TLR9 and reversely correlated with Ches1 in lung cancer patients. Our findings not only facilitated the further understanding of the crosstalk between miRNAs and TLRs in tumor biology, but also provided novel potential candidates for treatment of cancer.  相似文献   

14.
15.
Gemcitabine is the standard care chemotherapeutic agent to treat pancreatic cancer. Previously we demonstrated that calcitriol (1, 25-dihydroxycholecalciferol) has significant anti-proliferative effects in vitro and in vivo in multiple tumor models and enhances the activity of a variety of chemotherapeutic agents. We therefore investigated whether calcitriol could potentiate the cytotoxic activity of gemcitabine in the human pancreatic cancer Capan-1 model system. Isobologram analysis revealed that calcitriol and gemcitabine had synergistic antiproliferative effect over a wide range of drug concentrations. Calcitriol did not reduce the cytidine deaminase activity in Capan-1 tumors nor in the livers of Capan-1 tumor bearing mice. Calcitriol and gemcitabine combination promoted apoptosis in Capan-1 cells compared with either agent alone. The combination treatment also increased the activation of caspases-8, -9, -6 and -3 in Capan-1 cells. This result was confirmed by substrate-based caspase activity assay. Akt phosphorylation was reduced by calcitriol and gemcitabine combination treatment compared to single agent treatment. However, ERK1/2 phosphorylation was not modulated by either agent alone or by the combination. Tumor regrowth delay studies showed that calcitriol in combination with gemcitabine resulted in a significant reduction of Capan-1 tumor volume compared to single agent treatment. Our study suggests that calcitriol and gemcitabine in combination promotes caspase-dependent apoptosis, which may contribute to increased anti-tumor activity compared to either agent alone.Key words: calcitriol, gemcitabine, pancreatic carcinoma, apoptosis, Akt, ERK1/2  相似文献   

16.
Novel arylethynyltriazole acyclonucleosides were synthesized and assessed for their anticancer activity on drug-resistant pancreatic cancer MiaPaCa-2 cells. One lead compound was found to have much more potent apoptosis-related antiproliferative effects than gemcitabine, the current first-line treatment for pancreatic cancer. Further investigations showed that this active compound did not inhibit DNA synthesis, which means that it does not resemble gemcitabine and may involve a different mechanism of action.  相似文献   

17.
Gemcitabine is the standard care chemotherapeutic agent to treat pancreatic cancer. Previously we demonstrated that calcitriol (1, 25-dihydroxycholecalciferol) has significant anti-proliferative effects in vitro and in vivo in multiple tumor models and enhances the activity of a variety of chemotherapeutic agents. We therefore investigated whether calcitriol could potentiate the cytotoxic activity of gemcitabine in the human pancreatic cancer Capan-1 model system. Isobologram analysis revealed that calcitriol and gemcitabine had synergistic antiproliferative effect over a wide range of drug concentrations. Calcitriol did not reduce the CDDase activity in Capan-1 tumors nor in the livers of Capan-1 tumor bearing mice. Calcitriol and gemcitabine combination promoted apoptosis in Capan-1 cells compared with either agent alone. The combination treatment also increased the activation of caspases-8, -9, -6, and -3 in Capan-1 cells. This result was confirmed by substrate-based caspase activity assay. Akt phosphorylation was reduced by calcitriol and gemcitabine combination treatment compared to single agent treatment. However, ERK1/2 phosphorylation was not modulated by either agent alone or by the combination. Tumor regrowth delay studies showed that calcitriol in combination with gemcitabine resulted in a significant reduction of Capan-1 tumor volume compared to single agent treatment. Our study suggests that calcitriol and gemcitabine in combination promotes caspase-dependent apoptosis, which may contribute to increased anti-tumor activity compared to either agent alone.  相似文献   

18.
At diagnosis, the majority of pancreatic cancer patients present with advanced disease when curative resection is no longer feasible and current therapeutic treatments are largely ineffective. An improved understanding of molecular targets for effective intervention of pancreatic cancer is thus urgent. The Met receptor tyrosine kinase is one candidate implicated in pancreatic cancer. Notably, Met is over expressed in up to 80% of invasive pancreatic cancers but not in normal ductal cells correlating with poor overall patient survival and increased recurrence rates following surgical resection. However the functional role of Met signaling in pancreatic cancer remains poorly understood. Here we used RNA interference to directly examine the pathobiological importance of increased Met signaling for pancreatic cancer. We show that Met knockdown in pancreatic tumor cells results in decreased cell survival, cell invasion, and migration on collagen I in vitro. Using an orthotopic model for pancreatic cancer, we provide in vivo evidence that Met knockdown reduced tumor burden correlating with decreased cell survival and tumor angiogenesis, with minimal effect on cell growth. Notably, we report that Met signaling regulates the secretion of the pro-angiogenic chemokine interleukin-8/CXCL8. Our data showing that the interleukin-8 receptors CXCR1 and CXCR2 are not expressed on pancreatic tumor cells, suggests a paracrine mechanism by which Met signaling regulates interleukin-8 secretion to remodel the tumor microenvironment, a novel finding that could have important clinical implications for improving the effectiveness of treatments for pancreatic cancer.  相似文献   

19.
p8 is a stress gene whose activity is necessary for tumor development and progression. The acquisition of invasive properties by transformed cells is a key event in tumor development. In order to establish whether p8 is involved or not in this phenomenon, we assessed the capacity of p8 at influencing cell adhesion, migration, invasion, and tumorigenesis of pancreatic cancer cells. p8 expression was knocked down by a small interfering RNA (siRNA) in pancreatic cancer-derived Panc-1 and MiaPaCa-2 cells and subsequent changes in cell adhesion, migration, invasion, and tumorigenesis were assessed. Influence of p8 silencing on gene expression was analyzed using cDNA microarrays. The influence of inhibiting CDC42, one of the genes most over-expressed in p8-silenced cells, on the changes observed in p8-silenced cells was also evaluated. Finally, the tumorigenic capacities of Panc-1 cells transfected with control siRNA or p8 siRNA were compared by assessing their ability to form colonies in soft agar and to grow as xenografts in nude mice. Knocking-down p8 in pancreatic cancer cells in vitro decreased migration and invasion while increasing cell adhesion; over-expression produced the opposite effect. Knocking down CDC42 reversed almost completely the effects of silencing p8 in vitro. Finally, cells transfected with p8 siRNA were almost unable to form colonies in soft agar. In addition, p8-deficient Panc-1 cells did not develop tumors when injected subcutaneously in nude mice. In conclusion, p8 expression controls pancreatic cancer cell migration, invasion and adhesion, three processes required for metastasis, at least in part, through CDC42, a major regulator of cytoskeleton organization.  相似文献   

20.
The epidermal growth factor receptor (EGFR) and the insulin-like growth factor-1 receptor (IGF-1R) play critical roles in tumor growth, providing a strong rationale for the combined inhibition of IGF-1R and EGFR signaling in cancer therapy. We describe the design, affinity maturation, in vitro and in vivo characterization of the bispecific anti-IGF-1R/EGFR antibody XGFR*. XGFR* is based on the bispecific IgG antibody XGFR, which enabled heterodimerization of an IGF-1R binding scFab heavy chain with an EGFR-binding light and heavy chain by the “knobs-into-holes” technology. XGFR* is optimized for monovalent binding of human EGFR and IGF-1R with increased binding affinity for IGF-1R due to affinity maturation and highly improved protein stability to oxidative and thermal stress. It bears an afucosylated Fc-portion for optimal induction of antibody-dependent cell-mediated cytotoxicity (ADCC). Stable Chinese hamster ovary cell clones with production yields of 2–3 g/L were generated, allowing for large scale production of the bispecific antibody. XGFR* potently inhibits EGFR- and IGF-1R-dependent receptor phosphorylation, reduces tumor cell proliferation in cells with heterogeneous levels of IGF-1R and EGFR receptor expression and induces strong ADCC in vitro. A comparison of pancreatic and colorectal cancer lines demonstrated superior responsiveness to XGFR*-mediated signaling and tumor growth inhibition in pancreatic cancers that frequently show a high degree of IGF-1R/EGFR co-expression. XGFR* showed potent anti-tumoral efficacy in the orthotopic MiaPaCa-2 pancreatic xenograft model, resulting in nearly complete tumor growth inhibition with significant number of tumor remissions. In summary, the bispecific anti-IGF-1R/EGFR antibody XGFR* combines potent signaling and tumor growth inhibition with enhanced ADCC induction and represents a clinical development candidate for the treatment of pancreatic cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号