首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的:研究高压氧(HBO)对大鼠创伤性脑损伤(TBI)治疗效用并观察脑组织星形胶质细胞活化及胶质细胞源性神经营养因子(GDNF)和神经生长因子(NGF)表达的变化以探讨作用机制。方法:SD雄性大鼠54只,随机分为3组(n=18):假手术组、TBI组和HBO治疗组。采用Feeney法建立大鼠TBI模型,假手术组只开放骨窗,不予打击。HBO治疗组大鼠于脑损伤后6 h采用动物高压舱,以3ATA压力纯氧治疗60 min。TBI后48 h测量神经功能,然后分离脑组织,其中18只用干湿法测定脑含水量;18只脑组织用于切片,部分进行尼氏染色后作形态学观察,部分进行免疫组织化学染色,检测星形胶质细胞标记物胶质纤维酸性蛋白(GFAP)、波形蛋白(vimentin)与S100蛋白的表达;另18只大鼠取伤侧脑半球,进行Western blot分析,观察GDNF和NGF的表达。结果:HBO治疗能减轻神经功能障碍,降低脑含水量,减少海马部位神经细胞丢失,进一步激活损伤侧皮质与海马部位GFAP、vimentin与S-100阳性表达星形胶质细胞,促进损伤侧脑组织GDNF与NGF的表达。结论:HBO对创伤性脑损伤有较好治疗效果,其机制与上调GDNF和NGF的表达有关。  相似文献   

2.
Toll-like receptor 4 (TLR4) has been linked to various pathophysiological conditions, such as traumatic brain injury (TBI). It is reported that posttraumatic neuroinflammation is an essential event in the progression of brain injury after TBI. Recent evidences indicate that TLR4 mediates glial phagocytic activity and inflammatory cytokines production. Thus, TLR4 may be an important therapeutic target for neuroinflammatory injury post-TBI. This study was designed to explore potential effects and underlying mechanisms of TLR4 in rats suffered from TBI. TBI model was induced using a controlled cortical impact in rats, and application of TLR4 shRNA silenced TLR4 expression in brain prior to TBI induction. Elevated TLR4 was specifically observed in the hippocampal astrocytes and neurons posttrauma. Interestingly, TLR4 shRNA decreased the concentrations of interleukin (IL)-1β, IL-6, and tissue necrosis factor-α; alleviated hippocampal neuronal damage; reduced brain edema formation; and improved neurological deficits after TBI. Meanwhile, to further explore underlying molecular mechanisms of this neuroprotective effects of TLR4 knockdown, our results showed that TLR4 knockdown significantly inhibited the upregulation of autophagy-associated proteins caused by TBI. More importantly, an autophagy inducer, rapamycin pretreated, could partially abolish neuroprotective effects of TLR4 knockdown on TBI rats. Furthermore, TLR4 silencing markedly suppressed GFAP upregulation and improved cell hypertrophy to attenuate TBI-induced astrocyte activation. Taken together, these findings suggested that TLR4 knockdown ameliorated neuroinflammatory response and brain injury after TBI through suppressing autophagy induction and astrocyte activation.  相似文献   

3.

Background

The lack of axonal regeneration in the central nervous system is attributed among other factors to the formation of a glial scar. This cellular structure is mainly composed of reactive astrocytes that overexpress two intermediate filament proteins, the glial fibrillary acidic protein (GFAP) and vimentin. Indeed, in vitro, astrocytes lacking GFAP or both GFAP and vimentin were shown to be the substrate for increased neuronal plasticity. Moreover, double knockout mice lacking both GFAP and vimentin presented lower levels of glial reactivity in vivo, significant axonal regrowth and improved functional recovery in comparison with wild-type mice after spinal cord hemisection. From these results, our objective was to develop a novel therapeutic strategy for axonal regeneration, based on the targeted suppression of astroglial reactivity and scarring by lentiviral-mediated RNA-interference (RNAi).

Methods and Findings

In this study, we constructed two lentiviral vectors, Lv-shGFAP and Lv-shVIM, which allow efficient and stable RNAi-mediated silencing of endogenous GFAP or vimentin in vitro. In cultured cortical and spinal reactive astrocytes, the use of these vectors resulted in a specific, stable and highly significant decrease in the corresponding protein levels. In a second model — scratched primary cultured astrocytes — Lv-shGFAP, alone or associated with Lv-shVIM, decreased astrocytic reactivity and glial scarring. Finally, in a heterotopic coculture model, cortical neurons displayed higher survival rates and increased neurite growth when cultured with astrocytes in which GFAP and vimentin had been invalidated by lentiviral-mediated RNAi.

Conclusions

Lentiviral-mediated knockdown of GFAP and vimentin in astrocytes show that GFAP is a key target for modulating reactive gliosis and monitoring neuron/glia interactions. Thus, manipulation of reactive astrocytes with the Lv-shGFAP vector constitutes a promising therapeutic strategy for increasing glial permissiveness and permitting axonal regeneration after central nervous system lesions.  相似文献   

4.
The formation of glial scars after spinal cord injury (SCI) is one of the factors inhibiting axonal regeneration. Glial scars are mainly composed of reactive astrocytes overexpressing intermediate filament (IF) proteins such as glial fibrillary acidic protein (GFAP) and vimentin. In the current study, we delivered small interfering RNAs (siRNAs) targeting these IF proteins to SCI model rats using photomechanical waves (PMWs), and examined the restoration of motor function in the rats. PMWs are generated by irradiating a light-absorbing material with 532-nm nanosecond laser pulses from a Q-switched Nd:YAG laser. PMWs can site-selectively increase the permeability of the cell membrane for molecular delivery. Rat spinal cord was injured using a weight-drop device and the siRNA(s) solutions were intrathecally injected into the vicinity of the exposed SCI, to which PMWs were applied. We first confirmed the substantial uptake of fluorescence-labeled siRNA by deep glial cells; then we delivered siRNAs targeting GFAP and vimentin into the lesion. The treatment led to a significant improvement in locomotive function from five days post-injury in rats that underwent PMW-mediated siRNA delivery. This was attributable to the moderate silencing of the IF proteins and the subsequent decrease in the cavity area in the injured spinal tissue.  相似文献   

5.
Laminin is induced in astrocytes of adult brain by injury.   总被引:10,自引:2,他引:8       下载免费PDF全文
P Liesi  S Kaakkola  D Dahl    A Vaheri 《The EMBO journal》1984,3(3):683-686
Laminin is a high mol. wt. non-collagenous matrix glycoprotein, confined in adult tissues to basement membranes. In normal rat brain we found laminin mainly in vessel walls but, after injury, induced by stereotaxic injection of a neurotoxin, laminin immunoreactivity appeared also in reactive astrocytes, which are characteristically positive for the glial fibrillary acidic protein (GFAP). Laminin was first detected in GFAP-immunoreactive glial cells 24 h after injury. Four days later the majority of reactive astrocytes in the gray matter were positive for laminin and the laminin immunoreactivity, but not that of GFAP, gradually subsided within a month. Fibronectin, the other major matrix glycoprotein, was found only in capillary structures both in normal and lesioned brain tissue. The results indicate that mature astrocytes have the potential to produce laminin and suggest a role for this glycoprotein in brain regeneration.  相似文献   

6.
Traumatic brain injury (TBI) incidence rises during adolescence because during this critical neurodevelopmental period some risky behaviors increase. The purpose of this study was to assess the contribution of cannabinoid receptors (CB1 and CB2), blood brain barrier proteins (AQP4) and astrogliosis markers (vimentin) to neurological deficit and brain edema formation in a TBI weight drop model in adolescent male mice. These molecules were selected since they are known to change shortly after lesion. Here we extended their study in three different timepoints after TBI, including short (24h), early mid-term (72h) and late mid-term (two weeks). Our results showed that TBI induced an increase in brain edema up to 72 h after lesion that was directly associated with neurological deficit. Neurological deficit appeared 24 h after TBI and was completely recovered two weeks after trauma. CB1 receptor expression decreased after TBI and was negatively correlated with edema formation and behavioral impairments. CB2 receptor increased after injury and was associated with high neurological deficit whereas no correlation with edema was found. AQP4 increased after TBI and was positively correlated with edema and neurological impairments as occurred with vimentin expression in the same manner. The results suggest that CB1 and CB2 differ in the mechanisms to resolve TBI and also that some of their neuroprotective effects related to the control of reactive astrogliosis may be due to the regulation of AQP4 expression on the end-feet of astrocytes.  相似文献   

7.
The eye contains numerous water channel proteins and the roles of AQPs (aquaporins) in the retina are blurred, especially under disease conditions. The purpose of this study was to investigate the expression of AQP9 gene and proteins affected by elevated IOP (intraocular pressure) in a rat model of glaucoma induced by intravitreous injection of hypertonic saline into the episcleral veins. The gene and protein expressions of AQP9 were investigated by real-time PCR and Western blotting. The immunoreactive expression of AQP9, AQP4 and GFAP (glial fibrillary acidic protein) in the optic nerve of rats exposed to experimentally elevated IOP was detected by immunofluorescence microscopy. The mRNA and protein expression levels of AQP9 were up-regulated in the retina of an animal model of glaucoma. The immunoreactivities of the AQP9, AQP4 and GFAP were also detected and increased in the optic nerve region. The expression of AQP9 was up-regulated in this glaucoma model and the immunoreactivities of the AQP4 and GFAP were also detected as co-localizing with AQP9 in the optic nerve region, indicating retina ganglion cells were surrounded by activated astrocytes. This may indicate that the injured neurons may rely on the astrocytes. The alterations of AQP expression may compensate the glaucomatous damage.  相似文献   

8.
Atrophy of upper motor neurons hampers axonal regeneration and functional recovery following spinal cord injury (SCI). Apart from the severity of primary injury, a series of secondary pathological damages including spinal cord edema and glial scar formation affect the fate of injured upper motor neurons. The aquaporin-4 (AQP4) water channel plays a critical role in water homeostasis and migration of astrocytes in the central nervous system, probably offering a new therapeutic target for protecting against upper motor neuron degeneration after SCI. To test this hypothesis, we examined the effect of AQP4 deficiency on atrophy of rubrospinal neurons after unilateral rubrospinal tract transection at the fourth cervical level in mice. AQP4 gene knockout (AQP4?/?) mice exhibited high extent of spinal cord edema at 72 h after lesion compared with wild-type littermates. AQP4?/? mice showed impairments in astrocyte migration toward the transected site with a greater lesion volume at 1 week after surgery and glial scar formation with a larger cyst volume at 6 weeks. More severe atrophy and loss of axotomized rubrospinal neurons as well as axonal degeneration in the rubrospinal tract rostral to the lesion were observed in AQP4?/? mice at 6 weeks after SCI. AQP4 expression was downregulated at the lesioned spinal segment at 3 days and 1 week after injury, but upregulated at 6 weeks. These results demonstrated that AQP4 not only mitigates spinal cord damage but also ameliorates retrograde degeneration of rubrospinal neurons by promoting edema clearance and glial scar formation after laceration SCI. This finding supports the notion that AQP4 may be a promising therapeutic target for SCI.  相似文献   

9.
In response to injury of the central nervous system, astrocytes become reactive and express high levels of the intermediate filament (IF) proteins glial fibrillary acidic protein (GFAP), vimentin, and nestin. We have shown that astrocytes in mice deficient for both GFAP and vimentin (GFAP-/-vim-/-) cannot form IFs even when nestin is expressed and are thus devoid of IFs in their reactive state. Here, we have studied the reaction to injury in the central nervous system in GFAP-/-, vimentin-/-, or GFAP-/-vim-/- mice. Glial scar formation appeared normal after spinal cord or brain lesions in GFAP-/- or vimentin-/- mice, but was impaired in GFAP-/-vim-/- mice that developed less dense scars frequently accompanied by bleeding. These results show that GFAP and vimentin are required for proper glial scar formation in the injured central nervous system and that some degree of functional overlap exists between these IF proteins.  相似文献   

10.
Traumatic brain injury (TBI) is one of the main concerns worldwide as there is still no comprehensive therapeutic intervention. Astrocytic water channel aquaporin-4 (AQP-4) system is closely related to the brain edema, water transport at blood-brain barrier (BBB) and astrocyte function in the central nervous system (CNS). Minocycline, a broad-spectrum semisynthetic tetracycline antibiotic, has shown anti-inflammation, anti-apoptotic, vascular protection and neuroprotective effects on TBI models. Here, we tried to further explore the underlying mechanism of minocycline treatment for TBI, especially the relationship of minocycline and AQP4 during TBI treatment. In present study, we observed that minocycline efficaciously reduces the elevation of AQP4 in TBI mice. Furthermore, minocycline significantly reduced neuronal apoptosis, ameliorated brain edema and BBB disruption after TBI. In addition, the expressions of tight junction protein and astrocyte morphology alteration were optimized by minocycline administration. Similar results were found after treating with TGN-020 (an inhibitor of AQP4) in TBI mice. Moreover, these effects were reversed by cyanamide (CYA) treatment, which notably upregulated AQP4 expression level in vivo. In primary cultured astrocytes, small-interfering RNA (siRNA) AQP4 treatment prevented glutamate-induced astrocyte swelling. To sum up, our study suggests that minocycline improves the functional recovery of TBI through reducing AQP4 level to optimize BBB integrity and astrocyte function, and highlights that the AQP4 may be an important therapeutic target during minocycline treating for TBI.  相似文献   

11.
The formation of glial scar and cystic cavities restricts axon regeneration after spinal cord injury. Chondroitin sulphate proteoglycans (CSPGs) are regarded as the prominent inhibitory molecules in the glial scar, and their inhibitory effects may be abolished in part by chondroitinase ABC (ChABC), which can digest CSPGs. CSPGs are secreted mostly by reactive astrocytes, which form dense scar tissues. The intermediate filament protein vimentin underpins the cytoskeleton of reactive astrocytes. Previously we have shown that retroviruses carrying full-length antisense vimentin cDNA reduce reactive gliosis. Here we administered both antisense vimentin cDNA and ChABC to hemisected rat spinal cords. Using RT-PCR, Western blotting and immunohistochemistry, we found that the combined treatment reduced the formation of glial scar and cystic cavities through degrading CSPGs molecules and inhibiting intermediate filament proteins. The modified intra- and extra-cellular architecture may alter the physical and biochemical characteristics of the scar, and the combined therapy might be used to inhibit glial scar formation.  相似文献   

12.
The subfornical organ (SFO) is a circumventricular organ with a chemosensitive function, and its vessels have no blood-brain barrier. Our study investigated the glial and vascular components in the SFO to determine whether their distributions indicate subdivisions, how to characterize the vessels and how to demarcate the SFO. To this end, we investigated glial markers (GFAP, glutamine synthetase, S100) and other markers, including vimentin and nestin (immature glia), laminin (basal lamina), β-dystroglycan (glio-vascular connections), and aquaporin 4 (glial water channels). We determined that the ‘shell’ of the SFO was marked by immunoreactivity for S100, GFAP and aquaporin 4. Nestin immunoreactivity was characteristic of the ‘core’. Vimentin was almost evenly distributed. Glutamine synthetase immunoreactivity occurred in the shell but its expression was sparse. Vessels in the core were decorated with laminin but showed a discontinuous expression of aquaporin 4. Vimentin and GFAP staining was usually in separate glial elements, which may be related to their functional differences. Similar to other vessels in the brain, β-dystroglycan was detected along the shell vessels but laminin was not. The gradual disappearance of the laminin immunopositivity was attributed to the gradual disappearance of the perivascular space. Thus, our findings suggest that the shell and core glio-vascular structures are adapted to different sensory functions: osmoperception and the perception of circulating peptides, respectively.  相似文献   

13.
脊髓损伤后胶质瘢痕的形成是阻碍神经恢复的关键原因之一。碱性成纤维细胞生长因子(basic fibroblast growth factor,bFGF)具有良好的神经保护及促进脊髓损伤的修复作用,然而其对于胶质瘢痕的影响及其机制仍不清楚。本研究通过采用血管动脉夹(30 g)夹闭雌性SD大鼠脊髓2 min造成急性脊髓损伤模型并予以每天皮下注射bFGF(80 μg/kg),探讨bFGF促进脊髓损伤的恢复作用是否涉及到胶质瘢痕调控和Nogo-A/NgR信号的相关机制。通过检测损伤后28 d,各组BBB评分和斜板试验,发现bFGF显著促进脊髓损伤后大鼠运动功能的恢复。HE及尼氏染色显示,bFGF处理组相对于生理盐水处理组,其神经元明显增多,空洞面积减少。同时,星形胶质细胞标记物GFAP免疫荧光结果表明,bFGF减少胶质瘢痕形成,抑制星形胶质细胞过度激活。同样,通过Western 印迹检测发现,bFGF处理后,胶质瘢痕相关蛋白(如GFAP, neurocan)以及神经突生长抑制蛋白(Nogo-A)信号通路相关蛋白质表达量下降。上述结果表明,bFGF可能通过抑制Nogo-A信号蛋白的表达,从而抑制胶质瘢痕的形成,促进脊髓损伤的恢复。此机制研究为脊髓损伤的治疗和恢复提供全新的思路和药物靶点。  相似文献   

14.
The EphA4 receptor and its ephrin ligands are involved in astrocytic gliosis following CNS injury. Therefore, a strategy aimed at the blockade of EphA4 signaling could have broad therapeutic interest in brain disorders. We have identified novel small molecule inhibitors of EphA4 kinase in specific enzymatic and cell-based assays. In addition, we have demonstrated in two in vitro models of scratch injury that EphA4 receptor kinase is activated through phosphorylation and is involved in the repopulation of the wound after the scratch. A potent EphA4 kinase inhibitor significantly inhibited wound closure and reduced the accumulation of the reactive astrocytes inside the scratch. We have also shown that after the transient focal cerebral ischemia in rats, a large glial scar is formed by the accumulation of astrocytes and chondroitin sulfate proteoglycan surrounding the infarcted tissue at 7 days and 14 days of reperfusion. EphA4 protein expression is highly up-regulated in the same areas at these time points, supporting its potential role in the glial scar formation and maintenance. Taken together, these results suggest that EphA4 kinase inhibitors might interfere with the astrogliosis reaction and thereby lead to improved neurological outcome after ischemic injury.  相似文献   

15.
The phylogenetic evolution was studied of both glial fibrillary acidic protein (GFAP) and vimentin expression in the ependyma of the adult vertebrate spinal cord. Eleven species from different vertebrate groups were examined using different fixatives and fixation procedures to demonstrate any differences in immunoreactivity. GFAP expression in the ependymal cells showed a clear inverse relation with phylogenetic evolution because it was more elevated in lower than in higher vertebrates. GFAP positive cells can be ependymocytes and tanycytes, although depending on their structural characteristics and distribution, the scarce GFAP positive ependymal cells in higher vertebrates may be tanycytes. Ependymal vimentin expression showed a species-dependent pattern instead of a phylogenetic pattern of expression. Vimentin positive ependymal cells were only found in fish and rats; in fish, they were tanycytes and were quite scarce, with only one or two cells per section being immunostained. However, in the rat spinal cord, all the ependymocytes showed positive immunostaining for vimentin. The importance of the immunohistochemical procedure, the cellular nature of GFAP positive ependymal cells and the relationship between tanycytes and ependymocytes are discussed, as well as GFAP and vimentin expression.  相似文献   

16.
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. Cerebral edema, the abnormal accumulation of fluid within the brain parenchyma, contributes to elevated intracranial pressure (ICP) and is a common life-threatening neurological complication following TBI. Unfortunately, neurosurgical approaches to alleviate increased ICP remain controversial and medical therapies are lacking due in part to the absence of viable drug targets. In the present study, genetic inhibition (P2X7-/- mice) of the purinergic P2x7 receptor attenuated the expression of the pro-inflammatory cytokine, interleukin-1β (IL-1β) and reduced cerebral edema following controlled cortical impact, as compared to wild-type mice. Similarly, brilliant blue G (BBG), a clinically non-toxic P2X7 inhibitor, inhibited IL-1β expression, limited edemic development, and improved neurobehavioral outcomes after TBI. The beneficial effects of BBG followed either prophylactic administration via the drinking water for one week prior to injury or via an intravenous bolus administration up to four hours after TBI, suggesting a clinically-implementable therapeutic window. Notably, P2X7 localized within astrocytic end feet and administration of BBG decreased the expression of glial fibrillary acidic protein (GFAP), a reactive astrocyte marker, and attenuated the expression of aquaporin-4 (AQP4), an astrocytic water channel that promotes cellular edema. Together, these data implicate P2X7 as a novel therapeutic target to prevent secondary neurological injury after TBI, a finding that warrants further investigation.  相似文献   

17.
Summary Expression of intermediate filament proteins was studied in human developing spinal cord using immunoperoxidase and double-label immunofluorescence methods with monoclonal antibodies to vimentin and glial fibrillary acidic protein (GFAP). Vimentin was found in the processes of radial glial cells in 6-week embryos, while GFAP appeared in vimentin-positive astroglial cells at 8–10 weeks. GFAP and vimentin were present in approximately equal amounts in differentiating astrocytes in 23-week spinal cord. In 30-week fetuses, astrocytes reacted strongly for GFAP, while both the reaction intensity and the number of vimentin-positive cells fluctuated predominantly in the grey matter. No clear-cut transition from vimentin to GFAP was noticed during the development of astrocytes. The majority of ependymal cells in 23-week fetuses contained vimentin but only a few of them reacted for GFAP. The expression of vimentin continued during the whole development of the ependymal layer, in contrast to the reactivity for GFAP which disappeared between the 30th week and term.  相似文献   

18.
目的:探讨大鼠急性酒精中毒合并颅脑外伤后AQP4在海马区表达的变化.方法:健康成年雄性SD大鼠96只,随机分为4组:假手术组(N组)、急性酒精中毒组(A组)、中度创伤性脑损伤组(T组)和急性酒精中毒合并中度创伤性脑损伤(AT组).腹腔注射酒精(2.5g/kg),2h后以重物自由落体击打大鼠头部建立急性酒精中毒合并中度创伤性脑损伤(traumatic brain injury,TBI)动物模型.各组动物分别存活1、3、5、14天.免疫组化方法检测海马CA1区AQP4的表达.结果:AQP4阳性产物分布于胶质纤维和毛细血管壁,各实验组表达均高于N组.术后1天T组比AT组表达显著增高(P<0.01),术后3天AT组比T组表达增高(P<0.05),术后14天AT组比T组表达显著增高(P<0.01).结论:大鼠急性酒精中毒合并颅脑外伤后晚期,海马CA1区AQP4表达增高,可能加重晚期继发性脑水肿,是急性酒精中毒合并颅脑外伤预后不良的原因之一.  相似文献   

19.
In vitro and in vivo studies have suggested that reduced astrocytic uptake of neuronally released glutamate, alterations in expression of glial fibrillary acidic protein (GFAP) and aquaporin‐4 (AQP‐4) contribute to brain edema in acute liver failure (ALF). However, there is no evidence to date to suggest that these alterations occur in patients with ALF. We analyzed the mRNA expression of excitatory amino acid transporters (EAAT‐1, EAAT‐2), GFAP, and AQP‐4 in the cerebral cortex obtained at autopsy from eight patients with ALF and from seven patients with no evidence of hepatic or neurological disorders by real‐time PCR, and protein expression was assessed using immunoblotting and immunohistochemistry. We demonstrated a significant decrease in GFAP mRNA and protein levels in ALF patients compared to controls. While the loss of EAAT‐2 protein in ALF samples was post‐translational in nature, EAAT‐1 protein remained within normal limits. Immunohistochemistry confirmed that, in all cases, the losses of EAAT‐2 and GFAP were uniquely astrocytic in their localization. AQP‐4 mRNA expression was significantly increased and its immunohistochemistry demonstrated increased AQP‐4 immunoreactivity in the glial end‐feet process surrounding the microvessels. These findings provide evidence of selective alterations in the expression of genes coding for key astrocytic proteins implicated in central nervous system (CNS) excitability and brain edema in human ALF.

  相似文献   


20.
To investigate the effect of CXCL12 on migration of neural precursor cells after traumatic brain injury (TBI). We randomly divided 48 rats into four groups: (1) the sham group, rats were performed craniotomy only, (2) the control group, saline were injected into the ipsilateral cortex after TBI, (3) the CXCL12 group, CXCL12 were injected into the ipsilateral cortex after TBI, and (4) the CXCL12 + AMD3100 group, CXCL12 and AMD3100 were mixed together and injected into the ipsilateral cortex after TBI. At 7 days after TBI, the brain tissues were subjected to immunofluorescent double-labeled staining with the antibodies of CXCR4/DCX, MMP-2/DCX, MMP-2/GFAP, MMP-2/NeuN. Western blot assay was used to measure the protein levels of MMP-2. Compared with the control group, the number of CXCR4/DCX and MMP-2 positive cells around the injured corpus callosum area were significantly increased in the CXCL12 treatment group. The area occupied by these cells expanded and the shape changed from chain distribution to radial. CXCL12 + AMD3100 treatment significantly decreased the number and distribution area of CXCR4/DCX and MMP-2 positive cells compared with the CXCL12 treatment and control group. The DCX positive cells could not form chain or radial distribution. The protein expressions of MMP-2 had the similar change trends as the results of immunofluorescent staining. MMP-2 could be secreted by DCX, GFAP and NeuN positive cells. CXCL12/CXCR4 axis can improve the migration of the neuroblasts along the corpus callosum by stimulating the MMP-2 secretion of different types of cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号