首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long-time glucocorticoids (GCs) usage causes osteoporosis. In the present study, we explored the potential role of hydrogen sulfide (H2S) against dexamethasone (Dex)-induced osteoblast cell damage, and focused on the underlying mechanisms. We showed that two H2S-producing enzymes, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE), were significantly downregulated in human osteonecrosis tissues as well as in Dex-treated osteoblastic MC3T3-E1 cells. H2S donor NaHS as well as the CBS activator S-adenosyl-l-methionine (SAM) inhibited Dex-induced viability reduction, death and apoptosis in MC3T3-E1 cells. NaHS activated adenosine monophosphate (AMP)-activated protein kinase (AMPK) signaling, which participated its cyto-protective activity. AMPK inhibition by its inhibitor (compound C) or reduction by targeted-shRNA suppressed its pro-survival activity against Dex in MC3T3-E1 cells. Further, we found that NaHS inhibited Dex-mediated reactive oxygen species (ROS) production and ATP depletion. Such effects by NaHS were again inhibited by compound C and AMPKα1-shRNA. In summary, we show that H2S inhibits Dex-induced osteoblast damage through activation of AMPK signaling. H2S signaling might be further investigated as a novel target for anti-osteoporosis treatment.  相似文献   

2.
Until now, physiological mechanisms and downstream targets responsible for the cadmium (Cd) tolerance mediated by endogenous hydrogen sulfide (H2S) have been elusive. To address this gap, a combination of pharmacological, histochemical, biochemical and molecular approaches was applied. The perturbation of reduced (homo)glutathione homeostasis and increased H2S production as well as the activation of two H2S-synthetic enzymes activities, including L-cysteine desulfhydrase (LCD) and D-cysteine desulfhydrase (DCD), in alfalfa seedling roots were early responses to the exposure of Cd. The application of H2S donor sodium hydrosulfide (NaHS), not only mimicked intracellular H2S production triggered by Cd, but also alleviated Cd toxicity in a H2S-dependent fashion. By contrast, the inhibition of H2S production caused by the application of its synthetic inhibitor blocked NaHS-induced Cd tolerance, and destroyed reduced (homo)glutathione and reactive oxygen species (ROS) homeostases. Above mentioned inhibitory responses were further rescued by exogenously applied glutathione (GSH). Meanwhile, NaHS responses were sensitive to a (homo)glutathione synthetic inhibitor, but reversed by the cotreatment with GSH. The possible involvement of cyclic AMP (cAMP) signaling in NaHS responses was also suggested. In summary, LCD/DCD-mediated H2S might be an important signaling molecule in the enhancement of Cd toxicity in alfalfa seedlings mainly by governing reduced (homo)glutathione and ROS homeostases.  相似文献   

3.
An elevated level of homocysteine (Hcy) leads to hyperhomocysteinemia (HHcy), which results in vascular dysfunction and pathological conditions identical to stroke symptoms. Hcy increases oxidative stress and leads to increase in blood–brain barrier permeability and leakage. Hydrogen sulfide (H2S) production during the metabolism of Hcy has a cerebroprotective effect, although its effectiveness in Hcy-induced neurodegeneration and neurovascular permeability is less explored. Therefore, the current study was designed to perceive the neuroprotective effect of exogenous H 2S against HHcy, a cause of neurodegeneration. To test this hypothesis, we used four groups of mice: control, Hcy, control + sodium hydrosulfide hydrate (NaHS), and Hcy + NaHS, and an HHcy mice model in Swiss albino mice by giving a dose of 1.8 g of dl -Hcy/L in drinking for 8–10 weeks. Mice that have 30 µmol/L Hcy were taken for the study, and a H 2S supplementation of 20 μmol/L was given for 8 weeks to all groups of mice. HHcy results in the rise of the levels of superoxide and nitrite, although a concomitant decrease in the level of superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione, and arginase in oxidative stress and a concomitant decrease in the endogenous level of H 2S. Although H 2S supplementation ameliorated, the effect of HHcy and the levels of H 2S returned to the average level in HHcy animals supplemented with H 2S. Interestingly, H 2S supplementation ameliorated neurovascular remodeling and neurodegeneration. Thus, our study suggested that H 2S could be a beneficial therapeutic candidate for the treatment of Hcy-associated neurodegeneration, such as stroke and neurovascular disorders.  相似文献   

4.
Apoptosis of endothelial cells related to homocysteine (Hcy) has been reported in several studies. In this study, we evaluated whether reactive oxygen species (ROS)-producing signaling pathways contribute to Hcy-induced apoptosis induction, with specific emphasis on NADPH oxidases. Human umbilical vein endothelial cells were incubated with 0.01–2.5 mM Hcy. We determined the effect of Hcy on caspase-3 activity, annexin V positivity, intracellular NOX1, NOX2, NOX4, and p47phox expression and localization, nuclear nitrotyrosine accumulation, and mitochondrial membrane potential (ΔΨ m). Hcy induced caspase-3 activity and apoptosis; this effect was concentration dependent and maximal after 6-h exposure to 2.5 mM Hcy. It was accompanied by a significant increase in ΔΨ m. Cysteine was inactive on these parameters excluding a reactive thiol group effect. Hcy induced an increase in cellular NOX2, p47phox, and NOX4, but not that of NOX1. 3D digital imaging microscopy followed by image deconvolution analysis showed nuclear accumulation of NOX2 and p47phox in endothelial cells exposed to Hcy, but not in control cells, which coincided with accumulation of nuclear nitrotyrosine residues. Furthermore, Hcy enhanced peri-nuclear localization of NOX4 coinciding with accumulation of peri-nuclear nitrotyrosine residues, a reflection of local ROS production. p47phox was also increased in the peri-nuclear region. The Hcy-induced increase in caspase-3 activity was prevented by DPI and apocynin, suggesting involvement of NOX activity. The data presented in this article reveal accumulation of nuclear NOX2 and peri-nuclear NOX4 accumulation as potential source of ROS production in Hcy-induced apoptosis in endothelial cells.  相似文献   

5.
In the study, we investigated how exogenous H2S (hydrogen sulfide) influenced streptozotocin (STZ)-induced diabetic myocardial injury through cardiac mitochondrial protection and nitric oxide (NO) synthesis in intact rat hearts and primary neonatal rat cardiomyocytes. Diabetes was induced by STZ (50?mg/kg) and the daily administration of 100?μM NaHS (sodium hydrosulfide, an H2S donor) in the diabetes?+?NaHS treatment group. At the end of 4, 8, and 12?weeks, the morphological alterations and functions of the hearts were observed using transmission electron microscopy and echocardiography system. The percentage of apoptotic cardiomyocytes, the mitochondrial membrane potential, the production of reactive oxygen species (ROS) and the level of NO were measured. The expressions of cystathionine-γ-lyase (CSE), caspase-3 and -9, the mitochondrial NOX4 and cytochrome c were analyzed by western blotting. The results showed the cardiac function injured, morphological changes and the apoptotic rate increased in the diabetic rat hearts. In the primary neonatal rat cardiomyocytes of high glucose group, ROS production was increased markedly, whereas the expression of CSE and the level of NO was decreased. However, treatment with NaHS significantly reversed the diabetic rat hearts function, the morphological changes and decreased the levels of ROS and NO in the primary neonatal rat cardiomyocytes administrated with high glucose group. Furthermore, NaHS down-regulated the expression of mitochondrial NOX4 and caspase-3 and -9 and inhibited the release of cytochrome c from mitochondria in the primary neonatal rat cardiomyocytes. In conclusion, H2S is involved in the attenuation of diabetic myocardial injury through the protection of cardiac mitochondria.  相似文献   

6.
7.
Oxidative stress is a crucial factor inducing cardiomyocyte apoptosis due to cardiac hypertrophy. Additional evidence has revealed that H2S plays an antioxidant role and is cytoprotective. Hence, we aimed to elucidate whether H2S prevents cardiomyocyte apoptosis due to cardiac hypertrophy via its antioxidant function. The cardiac hypertrophy model was obtained by injecting a high dose of isoproterenol (ISO) subcutaneously, and the hemodynamic parameters were measured in groups that received either ISO or ISO with the treatment of NaHS. TUNEL (terminal deoxynucleotidyl transferase mediated dUTP nick-end labeling) and EM (electron microscopy) experiments were performed to determine the occurrence of apoptosis in heart tissues. The expression of caspase-3 protein in the cytoplasm and NADPH oxidase 4 (NOX4), and cytochrome c (cyt c) proteins in the mitochondria were analyzed using Western blotting. In contrast, to determine whether ISO-induced apoptosis in the cultured cardiomyocytes may be related to oxidative stress, JC-1 and MitoSOX assays were performed to detect the mitochondrial membrane potential and reactive oxygen species (ROS) production in the mitochondria. Exogenous H2S was found to ameliorate cardiac function. The histological observations obtained from TUNEL and EM demonstrated that treatment with NaHS inhibited the occurrence of cardiac apoptosis and improved cardiac structure. Moreover, H2S reduced the expression of the cleaved caspase-3, NOX4 and the leakage of cyt c from the mitochondria to the cytoplasm. We also observed that exogenous H2S could maintain the mitochondrial membrane potential and reduce ROS production in the mitochondria. Therefore, H2S reduces oxidative stress due to cardiac hypertrophy through the cardiac mitochondrial pathway.  相似文献   

8.
《Free radical research》2013,47(5):422-431
Abstract

Homocysteine (Hcy) at elevated levels is a putative risk factor for many cardiovascular disorders including atherosclerosis. In the present study, we investigated the effect of Hcy on the expression of cyclooxygenase (COX)-2 in murine macrophages and the mechanisms involved. Hcy increased the expression of COX-2 mRNA and protein in dose- and time-dependent manners, but did not affect COX-1 expression. Hcy-induced COX-2 expression was attenuated not only by the calcium chelators, EGTA and BAPTA-AM, but also by an antioxidant, N-acetylcysteine. Calcium chelators also attenuated Hcy-induced reactive oxygen species (ROS) production in macrophages, indicating that Hcy-induced COX-2 expression might be mediated through ROS generated by calcium-dependent signaling pathways. In another series of experiments, Hcy increased the intracellular concentration of calcium in a dose-dependent manner, which was attenuated by MK-801, an N-methyl-D-aspartate (NMDA) receptor inhibitor, but not by bicuculline, a gamma-aminobutyric acid receptor inhibitor. Molecular inhibition of NMDA receptor using small interfering RNA also attenuated Hcy-induced increases in intracellular calcium. Furthermore, both ROS production and Hcy-induced COX-2 expression were also inhibited by MK-801 as well as by molecular inhibition of NMDA receptor. Taken together, these findings suggest that Hcy enhances COX-2 expression in murine macrophages by ROS generated via NMDA receptor-mediated calcium signaling pathways.  相似文献   

9.
Zhao  Feng-li  Qiao  Pei-feng  Yan  Ning  Gao  Dan  Liu  Meng-jie  Yan  Yong 《Neurochemical research》2016,41(5):1145-1159

Hydrogen sulfide (H2S) is now considered to be a gasotransmitter and may be involved in the pathological process of Alzheimer’s disease (AD). A majority of APP is associated with mitochondria and is a substrate for the mitochondrial γ-secretase. The mitochondria-associated APP metabolism where APP intracellular domains (AICD) and Aβ are generated locally and may contribute to mitochondrial dysfunction in AD. Here, we aimed to investigate the ability of H2S to mediate APP processing in mitochondria and assessed the possible mechanisms underlying H2S-mediated AD development. We treated neurons from APP/PS1 transgenic mice with a range of sodium hydrosulfide (NaHS) concentrations. NaHS attenuated APP processing and decreased Aβ production in mitochondria. Meanwhile, NaHS did not changed BACE-1 and ADAM10 (a disintegrin and metalloprotease 10) protein levels, but NaHS (30 μM) significantly increased the levels of presenilin 1(PS1), PEN-2, and NCT, as well as improved the γ-secretase activity, while NaHS (50 μM) exhibits the opposing effects. Furthermore, the intracellular ATP and the COX IV activity of APP/PS1 neurons were increased after 30 μM NaHS treatment, while the ROS level was decreased and the MMP was stabilized. The effect of NaHS differs from DAPT (a non-selective γ-secretase inhibitor), and it selectively inhibited γ-secretase in vitro, without interacting with Notch and modulating its cleavage. The results indicated that NaHS decreases Aβ accumulation in mitochondria by selectively inhibiting γ-secretase. Thus, we provide a mechanistic view of NaHS is a potential anti-AD drug candidate and it may decrease Aβ deposition in mitochondria by selectively inhibiting γ-secretase activity and therefore protecting the mitochondrial function during AD conditions.

  相似文献   

10.
Tumour necrosis factor (TNF)‐α induces cardiac metabolic disorder and mitochondrial dysfunction. Hydrogen sulphide (H2S) contains anti‐inflammatory and biological effects in cardiomyocytes. This study investigated whether H2S modulates TNF‐α‐dysregulated mitochondrial function and metabolism in cardiomyocytes. HL‐1 cells were incubated with TNF‐α (25 ng/mL) with or without sodium hydrosulphide (NaHS, 0.1 mmol/L) for 24 hours. Cardiac peroxisome proliferator‐activated receptor (PPAR) isoforms, pro‐inflammatory cytokines, receptor for advanced glycation end products (RAGE) and fatty acid metabolism were evaluated through Western blotting. The mitochondrial oxygen consumption rate and adenosine triphosphate (ATP) production were investigated using Seahorse XF24 extracellular flux analyzer and bioluminescence assay. Fluorescence intensity using 2′, 7′‐dichlorodihydrofluorescein diacetate was used to evaluate mitochondrial oxidative stress. NaHS attenuated the impaired basal and maximal respiration, ATP production and ATP synthesis and enhanced mitochondrial oxidative stress in TNF‐α‐treated HL‐1 cells. TNF‐α‐treated HL‐1 cells exhibited lower expression of PPAR‐α, PPAR‐δ, phosphorylated 5′ adenosine monophosphate‐activated protein kinase‐α2, phosphorylated acetyl CoA carboxylase, carnitine palmitoyltransferase‐1, PPAR‐γ coactivator 1‐α and diacylglycerol acyltransferase 1 protein, but higher expression of PPAR‐γ, interleukin‐6 and RAGE protein than control or combined NaHS and TNF‐α‐treated HL‐1 cells. NaHS modulates the effects of TNF‐α on mitochondria and the cardiometabolic system, suggesting its therapeutic potential for inflammation‐induced cardiac dysfunction.  相似文献   

11.
Hyperhomocysteinemia (HHcy) accelerates atherosclerosis by increasing proliferation and stimulating cytokine secretioninTcells.However,whetherhomocysteine (Hcy)-mediated T cell activation is associated with metabolic reprogramming is unclear. Here, our in vivoand in vitrostudies showed that Hcy-stimulated splenic T-cell activation in mice was accompanied by increased levels of mitochondrial reactive oxygen species (ROS) and calcium, mitochondrial mass and respiration. Inhibiting mitochondrial ROS production and calcium signals or blocking mitochondrial respiration largely blunted Hcy-induced T-cell interferon γ (IFN-γ) secretion and proliferation. Hcy also enhanced endoplasmic reticulum (ER) stress in T cells, and inhibition ofERstress with 4-phenylbutyric acid blocked Hcy-induced T-cell activation. Mechanistically, Hcy increased ER-mitochondria coupling, and uncoupling ER-mitochondria by the microtubule inhibitor nocodazole attenuated Hcy-stimulated mitochondrial reprogramming, IFN-γ secretion and proliferation in T cells, suggesting that juxtaposition of ER and mitochondria is required for Hcy-promoted mitochondrial function and T-cell activation. In conclusion, Hcy promotes T-cell activation by increasing ER-mitochondria coupling and regulating metabolic reprogramming.  相似文献   

12.
Hydrogen sulphide (H2S) has been shown to play a crucial role in cardiovascular physiology and disease. However, there is no information about the possible role of H2S in cardiomyocyte hypertrophy (CH). Our results showed that pretreatment with NaHS, an H2S donor, significantly reduced [3H]-leucine incorporation, cell surface area, mRNA expression of brain natriuretic peptide (BNP), intracellular reactive oxygen species (ROS), miR-21 and increased atrial natriuretic peptide (ANP) and miR-133a expression in hypertrophic cardiomyocytes. Anti-miR133a inhibitor transfection partly reduced the anti-hypertrophic effect of NaHS. In conclusion, H2S is a direct inhibitor of CH; it acts by increasing miR-133a and inhibiting the increase in intracellular ROS.  相似文献   

13.
Endothelial cell dysfunction is one of the main reasons for type II diabetes vascular complications. Hydrogen sulphide (H2S) has antioxidative effect, but its regulation on mitochondrial dynamics and mitophagy in aortic endothelial cells under hyperglycaemia and hyperlipidaemia is unclear. Rat aortic endothelial cells (RAECs) were treated with 40 mM glucose and 200 μM palmitate to imitate endothelium under hyperglycaemia and hyperlipidaemia, and 100 μM NaHS was used as an exogenous H2S donor. Firstly, we demonstrated that high glucose and palmitate decreased H2S production and CSE expression in RAECs. Then, the antioxidative effect of H2S was proved in RAECs under high glucose and palmitate to reduce mitochondrial ROS level. We also showed that exogenous H2S inhibited mitochondrial apoptosis in RAECs under high glucose and palmitate. Using Mito Tracker and transmission electron microscopy assay, we revealed that exogenous H2S decreased mitochondrial fragments and significantly reduced the expression of p‐Drp‐1/Drp‐1 and Fis1 compared to high‐glucose and high‐palmitate group, whereas it increased mitophagy by transmission electron microscopy assay. We demonstrated that exogenous H2S facilitated Parkin recruited by PINK1 by immunoprecipitation and immunostaining assays and then ubiquitylated mitofusin 2 (Mfn2), which illuminated the mechanism of exogenous H2S on mitophagy. Parkin siRNA suppressed the expression of Mfn2, Nix and LC3B, which revealed that it eliminated mitophagy. In summary, exogenous H2S could protect RAECs against apoptosis under high glucose and palmitate by suppressing oxidative stress, decreasing mitochondrial fragments and promoting mitophagy. Based on these results, we proposed a new mechanism of H2S on protecting endothelium, which might provide a new strategy for type II diabetes vascular complication.  相似文献   

14.
Oxidative stress (OS)-induced mitochondrial damage and the subsequent osteoblast dysfunction contributes to the initiation and progression of osteoporosis. Notoginsenoside R1 (NGR1), isolated from Panax notoginseng, has potent antioxidant effects and has been widely used in traditional Chinese medicine. This study aimed to investigate the protective property and mechanism of NGR1 on oxidative-damaged osteoblast. Osteoblastic MC3T3-E1 cells were pretreated with NGR1 24 h before hydrogen peroxide administration simulating OS attack. Cell viability, apoptosis rate, osteogenic activity and markers of mitochondrial function were examined. The role of C-Jun N-terminal kinase (JNK) signalling pathway on oxidative injured osteoblast and mitochondrial function was also detected. Our data indicate that NGR1 (25 μM) could reduce apoptosis as well as restore osteoblast viability and osteogenic differentiation. NGR1 also reduced OS-induced mitochondrial ROS and restored mitochondrial membrane potential, adenosine triphosphate production and mitochondrial DNA copy number. NGR1 could block JNK pathway and antagonize the destructive effects of OS. JNK inhibitor (SP600125) mimicked the protective effects of NGR1while JNK agonist (Anisomycin) abolished it. These data indicated that NGR1 could significantly attenuate OS-induced mitochondrial damage and restore osteogenic differentiation of osteoblast via suppressing JNK signalling pathway activation, thus becoming a promising agent in treating osteoporosis.  相似文献   

15.
Hyperhomocysteinaemia (HHcy)-impaired endothelial dysfunction including endoplasmic reticulum (ER) stress plays a crucial role in atherogenesis. Hydrogen sulphide (H2S), a metabolic production of Hcy and gasotransmitter, exhibits preventing cardiovascular damages induced by HHcy by reducing ER stress, but the underlying mechanism is unclear. Here, we made an atherosclerosis with HHcy mice model by ApoE knockout mice and feeding Pagien diet and drinking L-methionine water. H2S donors NaHS and GYY4137 treatment lowered plaque area and ER stress in this model. Protein disulphide isomerase (PDI), a modulation protein folding key enzyme, was up-regulated in plaque and reduced by H2S treatment. In cultured human aortic endothelial cells, Hcy dose and time dependently elevated PDI expression, but inhibited its activity, and which were rescued by H2S. H2S and its endogenous generation key enzyme-cystathionine γ lyase induced a new post-translational modification-sulfhydration of PDI. Sulfhydrated PDI enhanced its activity, and two cysteine-terminal CXXC domain of PDI was identified by site mutation. HHcy lowered PDI sulfhydration association ER stress, and H2S rescued it but this effect was blocked by cysteine site mutation. Conclusively, we demonstrated that H2S sulfhydrated PDI and enhanced its activity, reducing HHcy-induced endothelial ER stress to attenuate atherosclerosis development.  相似文献   

16.
Luo  Liang  Gong  Yuan Qi  Qi  XieFei  Lai  WenYan  Lan  Haibing  Luo  Yaling 《Molecular and cellular biochemistry》2013,373(1-2):1-9
Tumor necrosis factor-alpha (TNFα) plays a crucial role in inflammatory diseases such as rheumatoid arthritis and postmenopausal osteoporosis. Recently, it has been demonstrated that hydrogen gas, known as a novel antioxidant, can exert therapeutic anti-inflammatory effect in many diseases. In this study, we investigated the effect of treatment with hydrogen molecule (H2) on TNFα-induced cell injury in osteoblast. The osteoblasts isolated from neonatal rat calvariae were cultured. It was found that TNFα suppressed cell viability, induced cell apoptosis, suppressed Runx2 mRNA expression, and inhibited alkaline phosphatase activity, which was reversed by co-incubation with H2. Incubation with TNFα-enhanced intracellular reactive oxygen species (ROS) formation and malondialdehyde production increased NADPH oxidase activity, impaired mitochondrial function marked by increased mitochondrial ROS formation and decreased mitochondrial membrane potential and ATP synthesis, and suppressed activities of antioxidant enzymes including SOD and catalase, which were restored by co-incubation with H2. Treatment with H2 inhibited TNFα-induced activation of NFκB pathway. In addition, treatment with H2 inhibited TNFα-induced nitric oxide (NO) formation through inhibiting iNOS activity. Treatment with H2 inhibited TNFα-induced IL-6 and ICAM-1 mRNA expression. In conclusion, treatment with H2 alleviates TNFα-induced cell injury in osteoblast through abating oxidative stress, preserving mitochondrial function, suppressing inflammation, and enhancing NO bioavailability.  相似文献   

17.
Bone remodeling is a continuous physiological process that requires constant generation of new osteoblasts from mesenchymal stem cells (MSCs). Differentiation of MSCs to osteoblast requires a metabolic switch from glycolysis to increased mitochondrial respiration to ensure the sufficient energy supply to complete this process. As a consequence of this increased mitochondrial metabolism, the levels of endogenous reactive oxygen species (ROS) rise. In the current study we analyzed the role of forkhead box O3 (FOXO3) in the control of ROS levels in human MSCs (hMSCs) during osteogenic differentiation. Treatment of hMSCs with H2O2 induced FOXO3 phosphorylation at Ser294 and nuclear translocation. This ROS-mediated activation of FOXO3 was dependent on mitogen-activated protein kinase 8 (MAPK8/JNK) activity. Upon FOXO3 downregulation, osteoblastic differentiation was impaired and hMSCs lost their ability to control elevated ROS levels. Our results also demonstrate that in response to elevated ROS levels, FOXO3 induces autophagy in hMSCs. In line with this, impairment of autophagy by autophagy-related 7 (ATG7) knockdown resulted in a reduced capacity of hMSCs to regulate elevated ROS levels, together with a reduced osteoblast differentiation. Taken together our findings are consistent with a model where in hMSCs, FOXO3 is required to induce autophagy and thereby reduce elevated ROS levels resulting from the increased mitochondrial respiration during osteoblast differentiation. These new molecular insights provide an important contribution to our better understanding of bone physiology.  相似文献   

18.
Many studies have shown that hydrogen sulfide (H2S) is both detrimental and beneficial to animals and plants, whereas its effect on bacteria is not fully understood. Here, we report that H2S, released by sodium hydrosulfide (NaHS), significantly inhibits the growth of Escherichia coli in a dose-dependent manner. Further studies have shown that H2S treatment stimulates the production of reactive oxygen species (ROS) and decreases glutathione (GSH) levels in E. coli, resulting in lipid peroxidation and DNA damage. H2S also inhibits the antioxidative enzyme activities of superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) and induces the response of the SoxRS and OxyR regulons in E. coli. Moreover, pretreatment with the antioxidant ascorbic acid (AsA) could effectively prevent H2S-induced toxicity in E. coli. Taken together, our results indicate that H2S exhibits an antibacterial effect on E. coli through oxidative damage and suggest a possible application for H2S in water and food processing.  相似文献   

19.
20.
Formaldehyde (FA) is a common environmental contaminant that has toxic effects on the central nervous system (CNS). Our previous data demonstrated that hydrogen sulfide (H2S), the third endogenous gaseous mediator, has protective effects against FA-induced neurotoxicity. As is known to all, Brain-derived neurotropic factor (BDNF), a member of the neurotrophin gene family, mediates its neuroprotective properties via various intracellular signaling pathways triggered by activating the tyrosine kinase receptor B (TrkB). Intriguingly, our previous data have illustrated the upregulatory role of H2S on BDNF protein expression in the hippocampus of rats. Therefore, in this study, we hypothesized that H2S provides neuroprotection against FA toxicity by regulating BDNF-TrkB pathway. In the present study, we found that NaHS, a donor of H2S, upregulated the level of BDNF protein in PC12 cells, and significantly rescued FA-induced downregulation of BDNF levels. Furthermore, we found that pretreatment of PC12 cells with K252a, an inhibitor of the BDNF receptor TrkB, markedly reversed the inhibition of NaHS on FA-induced cytotoxicity and ablated the protective effects of NaHS on FA-induced oxidative stress, including the accumulation of intracellular reactive oxygen species (ROS), 4-hydroxy-2-trans-nonenal (4-HNE), and malondialdehyde (MDA). We also showed that K252a abolished the inhibition of NaHS on FA-induced apoptosis, as well as the activation of caspase-3 in PC12 cells. In addition, K252a reversed the protection of H2S against FA-induced downregulation of Bcl-2 protein expression and upregulation of Bax protein expression in PC12 cells. These data indicate that the BDNF-TrkB pathway mediates the neuroprotection of H2S against FA-induced cytotoxicity, oxidative stress and apoptosis in PC12 cells. These findings provide a novel mechanism underlying the protection of H2S against FA-induced neurotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号