首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Breast cancer (BC) is a highly prevalent primary malignancy worldwide with poor prognosis. Despite the development of aggressive interventions, mortality due to BC remains high. BC cells reprogram nutrient metabolism to adapt to the energy acquisition and progression of the tumor.The metabolic changes in cancer cells are closely related to the abnormal function and effect of immune cells and immune factors, including chemokines, cytokines, and other related effector molecules in the tumor microenvironment (TME), leading to tumor immune escape, whereby the complex crosstalk between immune cells and cancer cells has been considered the key mechanism regulating cancer progression. In this review, we summarized the latest findings on metabolism-related processes in the immune microenvironment during BC progression. Our findings showing the impact of metabolism on the immune microenvironment may suggest new strategies for regulating the immune microenvironment and attenuating BC through metabolic interventions.  相似文献   

2.
Tumor-host interactions: the role of inflammation   总被引:1,自引:0,他引:1  
It is well established that interactions between tumor cells and the host tissue stroma play a key role in determining whether and how any given solid malignancy will develop. In most cases, tumor cells hijack stromal cell functions for their own benefit and ultimately dictate the rules of engagement to the host tissue microenvironment. However, the contribution of the different stromal cell components to tumor growth remains to be clarified. Because most solid tumors are accompanied by a local inflammatory response, it has long been thought that inflammation and carcinogenesis are related. If formal proof that cancer can be initiated by inflammation in the absence of exogenous carcinogens is still lacking, there is abundant evidence that the inflammatory response can play a central role in modulating tumor growth and progression. This review will discuss some of the mechanisms whereby inflammation can both enhance and inhibit tumor growth.  相似文献   

3.
Cancer cells acquire cell-autonomous capacities to undergo limitless proliferation and survival through the activation of oncogenes and inactivation of tumor suppressor genes. Nevertheless, the formation of a clinically relevant tumor requires support from the surrounding normal stroma, also referred to as the tumor microenvironment. Carcinoma-associated fibroblasts, leukocytes, bone marrow-derived cells, blood and lymphatic vascular endothelial cells present within the tumor microenvironment contribute to tumor progression. Recent evidence indicates that the microenvironment provides essential cues to the maintenance of cancer stem cells/cancer initiating cells and to promote the seeding of cancer cells at metastatic sites. Furthermore, inflammatory cells and immunomodulatory mediators present in the tumor microenvironment polarize host immune response toward specific phenotypes impacting tumor progression. A growing number of studies demonstrate a positive correlation between angiogenesis, carcinoma-associated fibroblasts, and inflammatory infiltrating cells and poor outcome, thereby emphasizing the clinical relevance of the tumor microenvironment to aggressive tumor progression. Thus, the dynamic and reciprocal interactions between tumor cells and cells of the tumor microenvironment orchestrate events critical to tumor evolution toward metastasis, and many cellular and molecular elements of the microenvironment are emerging as attractive targets for therapeutic strategies.  相似文献   

4.
中性粒细胞是机体外周血中数量最多的白细胞,在人体非特异性免疫系统中发挥着十分重要的作用.早期的研究认为,中性粒细胞能通过分泌细胞因子和产生活性氧等物质杀伤肿瘤.然而随着研究的深入,发现肿瘤微环境中的中性粒细胞对肿瘤的发展起到促进的作用.浸润性中性粒细胞产生的细胞因子和趋化因子能影响肿瘤微环境中炎症细胞的招募和激活,为肿瘤的发展提供良好的免疫抑制微环境,调控肿瘤的生长、转移和血管生成,还在肿瘤患者预后评估方面发挥着重要的作用.  相似文献   

5.
Inflammation, a key event in cancer development   总被引:12,自引:0,他引:12  
  相似文献   

6.
Certain immune cells and inflammatory cytokines are essential components in the tumor microenvironment to promote breast cancer progression. To identify key immune players in the tumor microenvironment, we applied highly invasive MDA-MB-231 breast cancer cell lines to co-culture with human monocyte THP-1 cells and identified CXCL7 by cytokine array as one of the increasingly secreted cytokines by THP-1 cells. Further investigations indicated that upon co-culturing, breast cancer cells secreted CSF1 to induce expression and release of CXCL7 from monocytes, which in turn acted on cancer cells to promote FAK activation, MMP13 expression, migration, and invasion. In a xenograft mouse model, administration of CXCL7 antibodies significantly reduced abundance of M2 macrophages in tumor microenvironment, as well as decreased tumor growth and distant metastasis. Clinical investigation further suggested that high CXCL7 expression is correlated with breast cancer progression and poor overall survival of patients. Overall, our study unveils an important immune cytokine, CXCL7, which is secreted by tumor infiltrating monocytes, to stimulate cancer cell migration, invasion, and metastasis, contributing to the promotion of breast cancer progression.Subject terms: Breast cancer, Cancer microenvironment, Target identification, Chemokines  相似文献   

7.
Traditional wisdom holds that intact immune responses, such as immune surveillance or immunoediting, are required for preventing and inhibiting tumor development; but recent evidence has also indicated that unresolved immune responses, such as chronic inflammation, can promote the growth and progression of cancer. Within the immune system, cytotoxic CD8(+) and CD4(+) Th1 T cells, along with their characteristically produced cytokine IFN-γ, function as the major anti-tumor immune effector cells, whereas tumor associated macrophages (TAM) or myeloid-derived suppressive cells (MDSC) and their derived cytokines IL-6, TNF, IL-1β and IL-23 are generally recognized as dominant tumor-promoting forces. However, the roles played by Th17 cells, CD4(+) CD25(+) Foxp3(+) regulatory T lymphocytes and immunoregulatory cytokines such as TGF-β in tumor development and survival remain elusive. These immune cells and the cellular factors produced from them, including both immunosuppressive and inflammatory cytokines, play dual roles in promoting or discouraging cancer development, and their ultimate role in cancer progression may rely heavily on the tumor microenvironment and the events leading to initial propagation of carcinogenesis.  相似文献   

8.
Mesenchymal stem cells (MSCs), which are modulated by cytokines present in the tumor microenvironment, play an important role in tumor progression. It is well documented that inflammation is an important part of the tumor microenvironment, so we investigated whether stimulation of MSCs by inflammatory cytokines would contribute to their ability to promote tumor growth. We first showed that MSCs could increase C26 colon cancer growth in mice. This growth-promoting effect was further accelerated when the MSCs were pre-stimulated by inflammatory factors IFN-γ and TNF-α. At the same time, we demonstrated that MSCs pre-stimulated by both inflammatory factors could promote tumor angiogenesis in vivo to a greater degree than untreated MSCs or MSCs pre-stimulated by either IFN-γ or TNF-α alone. A hen egg test-chorioallantoic membrane (HET-CAM) assay showed that treatment of MSC-conditioned medium can promote chorioallantoic membrane angiogenesis in vitro, especially treatment with conditioned medium of MSCs pretreated with IFN-γ and TNF-α together. This mechanism of promoting angiogenesis appears to take place via an increase in the expression of vascular endothelial growth factor (VEGF), which itself takes place through an increase in signaling in the hypoxia-inducible factor 1α (HIF-1α)-dependent pathway. Inhibition of HIF-1α in MSCs by siRNA was found to effectively reduce the ability of MSC to affect the growth of colon cancer in vivo in the inflammatory microenviroment. These results indicate that MSCs stimulated by inflammatory cytokines such as IFN-γ and TNF-α in the tumor microenvironment express higher levels of VEGF via the HIF-1α signaling pathway and that these MSCs then enhance tumor angiogenesis, finally leading to colon cancer growth in mice.  相似文献   

9.
10.
A hallmark of pancreatic ductal adenocarcinoma (PDAC) is the fibro-inflammatory microenvironment, consisting of activated pancreatic stellate cells, extracellular matrix proteins, and a variety of inflammatory cells, such as T cells, macrophages, or neutrophils. Tumor-infiltrating immune cells, which are found in nearly all cancers, including PDAC, often fail to eliminate the tumor, but conversely can promote its progression by altering the tumor microenvironment. Pancreatic cancer cells are able to attract polymorphonuclear neutrophils (PMN) via tumor secreted chemokines and in human PDAC, PMN infiltrates can be observed in the vicinity of tumor cells and in the desmoplastic tumor stroma, which correlate with undifferentiated tumor growth and poor prognosis. The behavior of tumor-infiltrating neutrophils in the tumor micromilieu is not yet understood at a mechanistic level. It has been shown that PMN have the potential to kill tumor cells, either directly or by antibody-dependent cell-mediated cytotoxicity, but on the other side various adverse effects of PMN, such as promotion of aggressive tumor growth with epithelial-to-mesenchymal transition and increased metastatic potential, have been described. Recent therapeutic approaches for PDAC focus not only the tumor cell itself, but also elements of the tumor microenvironment. Therefore, the role of PMN and their derived products (e.g. cytokines, proteases) as a new vein for a therapeutic target should be critically evaluated in this context. This review summarizes the current understanding of the interplay between proteases of tumor-infiltrating neutrophils and pancreatic tumor cells and elements of the desmoplastic stroma.  相似文献   

11.
12.
13.
Ren JL  Pan JS  Lu YP  Sun P  Han J 《Cellular signalling》2009,21(3):378-383
Inflammation acts as a double-edged sword in the pathogenesis of cancer. Inflammatory responses play a key role in eliminating potentially cancerous cells; however, an inflammatory microenvironment also promotes the development of cancer. Proinflammatory cytokines, the key mediators of inflammation, also play a dual role in oncogenesis. While they can promote neoplastic progression, recent studies have revealed an unexpected function of the inflammatory pathways in inhibiting cancer development. These studies demonstrate that cells undergoing senescence, a cellular program serving as a barrier to cancer development, produce increased amount of inflammatory cytokines. These inflammatory cytokines play an essential role in the initiation and maintenance of cellular senescence, and are responsible for triggering an innate immune response that clears the senescent tumor cells in vivo. The purpose of the present review is to discuss the dual roles of the inflammatory cytokines produced by senescent cells in the pathogenesis of cancer, and the signaling pathway mediating their role in cellular senescence.  相似文献   

14.
It has been increasingly recognized that tumor microenvironment plays an important role in carcinogenesis. Inflammatory component is present and contributes to tumor proliferation, angiogenesis, metastasis, and resistance to hormonal and chemotherapy. This review highlights the role of inflammation in the tumor metastasis. We focus on the function of proinflammatory factors, particularly cytokines during tumor metastasis. Understanding of the mechanisms by which inflammation contributes to metastasis will lead to innovative approach for treating cancer.

How tumor spreads remains an enigma and has received great attention in recent years, as metastasis is the major cause of cancer mortality. The complex and highly selective metastatic cascade not only depends on the intrinsic properties of tumor cells but also the microenvironment that they derive from. An inflammatory milieu consisting of infiltrated immune cells and their secretory cytokines, chemokines, and growth factors contribute significantly to the invasive and metastatic traits of cancer cells. Here, we review new insights into the molecular pathways that link inflammation in the tumor microenvironment to metastasis.  相似文献   

15.
炎症向癌症转化的机制一直是癌症研究中的重点。作为炎症-肿瘤转化起始时所处的环境,炎性微环境是一个多种调控因子、细胞的大集合,其中包含的肿瘤干细胞、肿瘤相关巨噬细胞以及细胞因子(如趋化因子、生长因子)等在常见的眼部肿瘤中对肿瘤的起始、发生、演进乃至恶性转化和转移的过程起到了至关重要的调控作用。基于此,主要讨论了在炎性微环境中的肿瘤相关细胞、细胞因子以及细胞外基质等对肿瘤细胞的增殖、转移、浸润、侵袭过程的影响,着重探讨了眼部炎症-肿瘤转化相关的分子机制;并综述了视网膜母细胞瘤、腺样囊性癌等常见眼部肿瘤的特征及其由炎症到肿瘤发生过程中起重要调控作用的分子;最后,针对这些眼部肿瘤普遍存在的信号通路和分子靶点做出了对未来诊断及治疗方法的展望,以期在今后对眼科肿瘤的诊治过程中,能够针对提及的炎性成分设计思路,最大化防止炎症-肿瘤转化和恶性转归出现。  相似文献   

16.
卢小敏  贺修胜 《生物磁学》2013,(3):567-569,581
恶性肿瘤严重威胁着人们的健康,肿瘤细胞侵袭和转移是恶性肿瘤患者死亡的重要原因。研究表明,肿瘤恶性转化的过程需要适宜的微环境,即肿瘤微环境,肿瘤细胞在肿瘤微环境中受到细胞因子、蛋白酶等多种因素的影响,发生免疫炎性反应、上皮间质转化(EMT)、刺激肿瘤血管形成等一系列病理生理改变,从而促进肿瘤的侵袭和转移。本文概述了机体免疫炎性反应、EMT和肿瘤微环境在肿瘤中的相互联系及其作用,以期为深入研究肿瘤发生发展的分子机制提供新的思路,并为肿瘤的分子靶向治疗提供理论依据。  相似文献   

17.
Pathways connecting inflammation and cancer   总被引:3,自引:0,他引:3  
Chronic and persistent inflammation contributes to cancer development and can predispose to carcinogenesis. Infection-driven inflammations are involved in the pathogenesis of approximately 15-20% of human tumors. However, even tumors that are not epidemiologically linked to pathogens are characterized by the presence of an inflammatory component in their microenvironment. Hallmarks of cancer-associated inflammation include the presence of infiltrating leukocytes, cytokines, chemokines, growth factors, lipid messengers, and matrix-degrading enzymes. Schematically, two interrelated pathways link inflammation and cancer: (1) genetic events leading to neoplastic transformation promote the construction of an inflammatory milieu; (2) tumor-infiltrating leukocytes, in particular macrophages, are prime regulators of cancer inflammation. Thus, an intrinsic pathway of inflammation (driven in tumor cells), as well as an extrinsic pathway (in tumor-infiltrating leukocytes) have been described and both contribute to tumor progression.  相似文献   

18.
研究表明,肿瘤转移是恶性肿瘤的临床治疗失败的根本原因。肿瘤转移不仅取决于肿瘤细胞自身的特性,还涉及其与肿瘤酸性微环境之间的相互作用。肿瘤微环境构成非常复杂,可促进肿瘤的增生、转移、侵袭,以及逃避宿主免疫监视和治疗耐药性。肿瘤细胞的生存依赖于在酸性微环境条件下的适应,肿瘤细胞可以通过一些离子交换体维持酸性微环境,缺氧的肿瘤组织酸化可以释放蛋白酶如纤维蛋白酶及MMPs降解细胞外基质、上调VEGF基因表达促进肿瘤新生血管生成等促进肿瘤侵袭转移。近年来,影响肿瘤微环境的因素已经成为癌症研究领域中的新兴话题。  相似文献   

19.
Tumor development and tumor progression is not only determined by the corresponding tumor cells but also by the tumor microenvironment. This includes an orchestrated network of interacting cell types (e.g. immune cells, endothelial cells, fibroblasts, and mesenchymal stroma/stem cells (MSC)) via the extracellular matrix and soluble factors such as cytokines, chemokines, growth factors and various metabolites. Cell populations of the tumor microenvironment can interact directly and indirectly with cancer cells by mutually altering properties and functions of the involved partners. Particularly, mesenchymal stroma/stem cells (MSC) play an important role during carcinogenesis exhibiting different types of intercellular communication. Accordingly, this work focusses on diverse mechanisms of interaction between MSC and cancer cells. Moreover, some functional changes and consequences for both cell types are summarized which can eventually result in the establishment of a carcinoma stem cell niche (CSCN) or the generation of new tumor cell populations by MSC-tumor cell fusion.  相似文献   

20.
Understanding tumor invasion and metastasis is of crucial importance for both fundamental cancer research and clinical practice. In vitro experiments have established that the invasive growth of malignant tumors is characterized by the dendritic invasive branches composed of chains of tumor cells emanating from the primary tumor mass. The preponderance of previous tumor simulations focused on non-invasive (or proliferative) growth. The formation of the invasive cell chains and their interactions with the primary tumor mass and host microenvironment are not well understood. Here, we present a novel cellular automaton (CA) model that enables one to efficiently simulate invasive tumor growth in a heterogeneous host microenvironment. By taking into account a variety of microscopic-scale tumor-host interactions, including the short-range mechanical interactions between tumor cells and tumor stroma, degradation of the extracellular matrix by the invasive cells and oxygen/nutrient gradient driven cell motions, our CA model predicts a rich spectrum of growth dynamics and emergent behaviors of invasive tumors. Besides robustly reproducing the salient features of dendritic invasive growth, such as least-resistance paths of cells and intrabranch homotype attraction, we also predict nontrivial coupling between the growth dynamics of the primary tumor mass and the invasive cells. In addition, we show that the properties of the host microenvironment can significantly affect tumor morphology and growth dynamics, emphasizing the importance of understanding the tumor-host interaction. The capability of our CA model suggests that sophisticated in silico tools could eventually be utilized in clinical situations to predict neoplastic progression and propose individualized optimal treatment strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号