首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Heart failure preceded by pathological cardiac hypertrophy is a leading cause of death. Long noncoding RNA small nucleolar RNA host gene 1 (SNHG1) was reported to inhibit cardiomyocytes apoptosis, but the role and underlying mechanism of SNHG1 in pathological cardiac hypertrophy have not yet been understood. This study was designed to investigate the role and molecular mechanism of SNHG1 in regulating cardiac hypertrophy. We found that SNHG1 was upregulated during cardiac hypertrophy both in vivo (transverse aortic constriction treatment) and in vitro (phenylephrine [PE] treatment). SNHG1 overexpression attenuated the cardiomyocytes hypertrophy induced by PE, while SNHG1 inhibition promoted hypertrophic response of cardiomyocytes. Furthermore, SNHG1 and high‐mobility group AT‐hook 1 (HMGA1) were confirmed to be targets of miR‐15a‐5p. SNHG1 promoted HMGA1 expression by sponging miR‐15a‐5p, eventually attenuating cardiomyocytes hypertrophy. There data revealed a novel protective mechanism of SNHG1 in cardiomyocytes hypertrophy. Thus, targeting of SNHG1‐related pathway may be therapeutically harnessed to treat cardiac hypertrophy.  相似文献   

3.
4.
Increasing evidence have proved that long noncoding RNAs (lncRNAs) play significant roles in tumorigenesis and development of various cancers. However, the effect of small nucleolar RNA host gene 20 (SNHG20) on the progression of esophageal squamous cell carcinoma (ESCC) remains to be discovered. Herein, we aim to find out the function and the possible mechanism of SNHG20 in ESCC progression. In our study, we demonstrate that SNHG20 is markedly upregulated in ESCC tissues and cell lines. Besides, the level of SNHG20 is closely associated with tumor size, lymph node metastasis, TNM stage, and tumor grade. In addition, SNHG20 level is an independent predictor for clinical outcomes of ESCC patients. Then the gain- and loss-of-function assays reveal that SNHG20 overexpression promotes cell proliferation, migration, invasion, and epithelial-mesenchymal transition as well as represses apoptosis, whereas depletion of SNHG20 exhibits opposite effects. Moreover, we uncover that SNHG20 modulates the expression of ataxia telangiectasia–mutated kinase (p-ATM), p-JAK1/2, and programmed cell death 1 ligand 1 (PD-L1) in ESCC cells and ATM upregulation restores the suppressive effect of SNHG20 inhibition on ESCC progression. Therefore, we conclude that SNHG20 serves as a carcinogen in ESCC by promoting growth and metastasis via ATM-JAK-PD-L1 pathway, supplying a possibly effective therapeutic target for ESCC.  相似文献   

5.
6.
目前发现长链非编码RNA(long non-coding RNA, lncRNA)小核仁RNA宿主基因7 (small nucleolar RNA host gene 7, SNHG7)在多种肿瘤中高表达,发挥原癌基因效应,但是其在舌癌中的功能尚未研究。qRT-PCR结果证实,SNHG7在舌癌组织和细胞中均下调。在舌癌细胞中,过表达SNHG7抑制舌癌细胞增殖,敲低SNHG7促进舌癌细胞增殖。生物信息学分析及双荧光素酶报告基因实验证实,miR-9-5p与SNHG7结合且下调其表达。过表达SNHG7,miR-9-5p表达量降低而自噬/苄氯素1调节因子1(autophagy/Beclin 1 regulator 1, Ambra1)的表达增加。敲低SNHG7,上调miR-9-5p,且降低Ambra1的表达。临床组织标本随访资料统计发现,SNHG7、Ambra1与舌癌患者预后正相关,而miR-9-5p与舌癌患者预后负相关。提示SNHG7/miR-9-5p/Ambra1可作为舌癌预后的潜在标志物。  相似文献   

7.
目的:探讨非诺贝特(fenofibrate)对血管紧张素Ⅱ(AngⅡ)诱导的肥大心肌细胞的抑制作用及对FoxO1表达的影响。方法:首先采用AngⅡ诱导心肌细胞肥大,将细胞分为三组:对照组:未给予任何干预;心肌细胞肥大组:AngⅡ(10-7mol/L)刺激细胞;治疗组:先给予fenofibrate(10-5mol/L),30min后AngⅡ(10-7mol/L)刺激细胞。应用蛋白免疫印迹法(western-blotting)和实时定量PCR法(real time PCR)检测各组细胞中转录因子FoxO1的蛋白质及mRNA含量,心肌细胞肥大的判断使用脑钠肽(brain natriuret icpepide BNP)。结果:心肌细胞肥大组的FoxO1表达较对照组明显降低,而治疗组的FoxO1表达较心肌肥大组明显升高。结论:非诺贝特可能通过上调FoxO1表达,从而抑制心肌细胞肥大。  相似文献   

8.
9.
Thyroid cancer (TC) has been characterized as the most common malignant malady of the endocrine system. Small nucleolar RNA host gene 7 (SNHG7) has been reported to serve as a key regulator in a large number of human cancer types, but its role in TC and the underlying regulatory mechanism have never been evaluated yet. The present study indicated that the expression of SNHG7 was markedly higher in TC cell lines. Knockdown of SNHG7 led to a suppression of TC cell progression and migration. Acyl-CoA synthetase long-chain family member 1 (ACSL1) has also been demonstrated as an oncogene in many cancers. Herein an inhibition of ACSL1 after SNHG7 knockdown was captured. Further, the suppressing effects of SNHG7 knockdown on TC cell processes were counteracted by ACSL1 overexpression. Data from online bioinformatics analysis, RNA immunoprecipitation, and luciferase reporter assays validated the interaction between microRNA-449a (miR-449a) and SNHG7 or ACSL1. It was also verified that SNHG7 sequestered miR-449a and therefore elevated ACSL1 expression levels. To conclude, the current study indicated that SNHG7 promoted proliferation and migration of TC cells by sponging miR-449a and therefore upregulating ACSL1. The present study may provide more explorations about the molecular regulation mechanism of long noncoding RNAs in TC progression.  相似文献   

10.
Cardiac hypertrophy is the uppermost risk factor for the development of heart failure, leading to irreversible cardiac structural remodeling and sudden death. As a major mediator of cardiac remodeling, oncostatin M (OSM) and its receptor, OSMR, attract plenty of interest. Recent studies have demonstrated key effects of noncoding RNAs on myocardial remodeling. However, whether noncoding RNAs that regulate the expression of OSMR would regulate the process of remodeling remain unclear. Herein, we observed that long noncoding RNA (lncRNA) Pvt1 expression showed to be significantly elicited by aortic banding (AB) operation in vivo and by angiotensin (Ang II) treatment in vitro. Pvt1 knockdown significantly attenuated the myocardial hypertrophy caused by pressure overload within rats and the cardiac myocyte hypertrophy caused by Ang II in vitro. Moreover, Pvt1 knockdown also decreased cellular myomesin and B-raf, which was involved in OSM function in cardiac remodeling. Based on online tools prediction, miR-196b may simultaneously target Pvt1 and OSMR 3′ untranslated region (UTR). In rat H9c2 cells and primary cardiac myocyte, Pvt1 and miR-196b exerted negative regulatory effects on each other and miR-196b negatively regulated OSMR expression. Pvt1 directly targeted miR-196b to relieve miR-196b-induced OSMR suppression via acting as a competing endogenous RNA (ceRNA). Moreover, the effect of miR-196b suppression upon the B-raf was opposite to Pvt1 knockdown, and miR-196b suppression might significantly attenuate the effect of Pvt1 knockdown. In summary, Pvt1/miR-196b axis modulating cardiomyocyte hypertrophy and remodeling via OSMR. Our findings provide a rationale for further studies on the potential therapeutic benefits of Pvt1 function and mechanism in cardiac and cardiomyocyte hypertrophy by a lncRNA-miRNA-mRNA network.  相似文献   

11.
12.
The aberrant expression and dysfunction of long non‐coding RNAs (lncRNAs) have been identified as critical factors governing the initiation and progression of different human cancers, including diffuse large B‐cell lymphoma (DLBCL). LncRNA small nucleolar RNA host gene 16 (SNHG16) has been recognized as a tumour‐promoting factor in various types of cancer. However, the biological role of SNHG16 and its underlying mechanism are still unknown in DLBCL. Here we disclosed that SNHG16 was overexpressed in DLBCL tissues and the derived cell lines. SNHG16 knockdown significantly suppressed cell proliferation and cell cycle progression, and it induced apoptosis of DLBCL cells in vitro. Furthermore, silencing of SNHG16 markedly repressed in vivo growth of OCI‐LY7 cells. Mechanistically, SNHG16 directly interacted with miR‐497‐5p by acting as a competing endogenous RNA (ceRNA) and inversely regulated the abundance of miR‐497‐5p in DLBCL cells. Moreover, the proto‐oncogene proviral integration site for Moloney murine leukaemia virus 1 (PIM1) was identified as a novel direct target of miR‐497‐5p. SNHG16 overexpression rescued miR‐497‐5p‐induced down‐regulation of PIM1 in DLBCL cells. Importantly, restoration of PIM1 expression reversed SNHG16 knockdown‐induced inhibition of proliferation, G0/G1 phase arrest and apoptosis of OCI‐LY7 cells. Our study suggests that the SNHG16/miR‐497‐5p/PIM1 axis may provide promising therapeutic targets for DLBCL progression.  相似文献   

13.
14.
15.
Adiponectin and miR-133a are key regulators in cardiac hypertrophy. However, whether APN has a potential effect on miR-133a remains unclear. In this study, we aimed to investigate whether APN could regulate miR-133a expression in Angiotensin II (Ang II) induced cardiac hypertrophy in vivo and in vitro. Lentiviral-mediated adiponectin treatment attenuated cardiac hypertrophy induced by Ang II infusion in male wistar rats as determined by reduced cell surface area and mRNA levels of atrial natriuretic peptide (ANF) and brain natriuretic peptide (BNP), also the reduced left ventricular end-diastolic posterior wall thickness (LVPWd) and end-diastolic interventricular septal thickness (IVSd). Meanwhile, APN elevated miR-133a level which was downregulated by Ang II. To further investigate the underlying molecular mechanisms, we treated neonatal rat ventricular myocytes (NRVMs) with recombinant rat APN before Ang II stimulation. Pretreating cells with recombinant APN promoted AMP-activated protein kinase (AMPK) phosphorylation and inhibited ERK activation. By using the inhibitor of AMPK or a lentiviral vector expressing AMPK short hairpin RNA (shRNA) cancelled the positive effect of APN on miR-133a. The ERK inhibitor PD98059 reversed the downregulation of miR-133a induced by Ang II. These results indicated that the AMPK activation and ERK inhibition were responsible for the positive effect of APN on miR-133a. Furthermore, adiponectin receptor 1 (AdipoR1) mRNA expression was inhibited by Ang II stimulation. The positive effects of APN on AMPK activation and miR-133a, and the inhibitory effect on ERK phosphorylation were inhibited in NRVMs transfected with lentiviral AdipoR1shRNA. In addition, APN depressed the elevated expression of connective tissue growth factor (CTGF), a direct target of miR-133a, through the AMPK pathway. Taken together, our data indicated that APN reversed miR-133a levels through AMPK activation, reduced ERK1/2 phosphorylation in cardiomyocytes stimulated with Ang II, revealing a previously undemonstrated and important link between APN and miR-133a.  相似文献   

16.
Lung cancer ranks topmost among the most frequently diagnosed cancers. Despite increasing research, there are still unresolved mysteries in the molecular mechanism of lung cancer. Long noncoding RNA small nucleolar RNA host gene 11 (SNHG11) was found to be upregulated in lung cancer and facilitated lung cancer cell proliferation, migration, invasion, and epithelial–mesenchymal transition progression while suppressed cell apoptosis. Moreover, the high expression of SNHG11 was correlated with poor prognosis of lung cancer patients, TNM stage, and tumor size. Further assays demonstrated that SNHG11 functioned in lung cancer cells via Wnt/β-catenin signaling pathway. Subsequently, Wnt/β-catenin pathway was found to be activated through SNHG11/miR-4436a/CTNNB1 ceRNA axis. As inhibiting miR-4436 could only partly rescue the suppression of cell function induced by silencing SNHG11, it was suspected that β-catenin might enter cell nucleus through other pathways. Mechanism investigation proved that SNHG11 would directly bind with β-catenin to activate classic Wnt pathway. Subsequently, in vivo tumorigenesis was also demonstrated to be enhanced by SNHG11. Hence, SNHG11 was found to promote lung cancer progression by activating Wnt/β-catenin pathway in two different patterns, implying that SNHG11 might contribute to lung cancer treatment by acting as a therapeutic target.  相似文献   

17.
Angiotensin II (Ang II) plays an important role in the onset and development of cardiac remodelling associated with changes of autophagy. Angiotensin1‐7 [Ang‐(1‐7)] is a newly established bioactive peptide of renin–angiotensin system, which has been shown to counteract the deleterious effects of Ang II. However, the precise impact of Ang‐(1‐7) on Ang II‐induced cardiomyocyte autophagy remained essentially elusive. The aim of the present study was to examine if Ang‐(1‐7) inhibits Ang II‐induced autophagy and the underlying mechanism involved. Cultured neonatal rat cardiomyocytes were exposed to Ang II for 48 hrs while mice were infused with Ang II for 4 weeks to induce models of cardiac hypertrophy in vitro and in vivo. LC3b‐II and p62, markers of autophagy, expression were significantly elevated in cardiomyocytes, suggesting the presence of autophagy accompanying cardiac hypertrophy in response to Ang II treatment. Besides, Ang II induced oxidative stress, manifesting as an increase in malondialdehyde production and a decrease in superoxide dismutase activity. Ang‐(1‐7) significantly retarded hypertrophy, autophagy and oxidative stress in the heart. Furthermore, a role of Mas receptor in Ang‐(1‐7)‐mediated action was assessed using A779 peptide, a selective Mas receptor antagonist. The beneficial responses of Ang‐(1‐7) on cardiac remodelling, autophagy and oxidative stress were mitigated by A779. Taken together, these result indicated that Mas receptor mediates cardioprotection of angiotensin‐(1‐7) against Ang II‐induced cardiomyocyte autophagy and cardiac remodelling through inhibition of oxidative stress.  相似文献   

18.
Noncoding RNAs are important for the regulation of cardiac hypertrophy. The function of MALAT1 (a long noncoding mRNA), miR-181a, and HMGB2, their contribution to cardiac hypertrophy, and the regulatory relationship between them during this process remain unknown. In the present study, we treated primary cardiomyocytes with angiotensin II (Ang II) to mimic cardiac hypertrophy. MALAT1 expression was significantly downregulated in Ang II-treated cardiomyocytes compared with control cardiomyocytes. Ang II-induced cardiac hypertrophy was suppressed by overexpression of MALAT1 and promoted by genetic knockdown of MALAT1. A dual-luciferase reporter assay demonstrated that MALAT1 acted as a sponge for miR-181a and inhibited its expression during cardiac hypertrophy. Cardiac hypertrophy was suppressed by overexpression of an miR-181a inhibitor and enhanced by overexpression of an miR-181a mimic. HMGB2 was downregulated during cardiac hypertrophy and was identified as a target of miR-181a by bioinformatics analysis and a dual-luciferase reporter assay. miR-181a overexpression decreased the mRNA and protein levels of HMGB2. Rescue experiments indicated that MALAT1 overexpression reversed the effect of miR-181a on HMGB2 expression. In summary, the results of the present study show that MALAT1 acts as a sponge for miR-181a and thereby regulates expression of HMGB2 and development of cardiac hypertrophy. The novel MALAT1/miR-181a/HMGB2 axis might play a crucial role in cardiac hypertrophy and serve as a new therapeutic target.Key words: Hypertrophy, cardiomyocytes, MALAT1, miR-181a, HMGB2  相似文献   

19.
The renin–angiotensin system (RAS) is involved in the cardiac and vascular remodeling associated with cardiovascular diseases. Angiotensin (Ang) II/AT1 axis is known to promote cardiac hypertrophy and collagen deposition. In contrast, Ang-(1–7)/Mas axis opposes Ang II effects in the heart producing anti-trophic and anti-fibrotic effects. Exercise training is known to induce cardiac remodeling with physiological hypertrophy without fibrosis. We hypothesize that cardiac remodeling induced by chronic exercise depends on the action of Ang-(1–7)/Mas axis. Thus, we evaluated the effect of exercise training on collagen deposition and RAS components in the heart of FVB/N mice lacking Mas receptor (Mas-KO). Male wild-type and Mas-KO mice were subjected to a moderate-intense swimming exercise training for 6 weeks. The left ventricle (LV) of the animals was sectioned and submitted to qRT-PCR and histological analysis. Circulating and tissue angiotensin peptides were measured by RIA. Sedentary Mas-KO presented a higher circulating Ang II/Ang-(1–7) ratio and an increased ACE2 expression in the LV. Physical training induced in Mas-KO and WT a similar cardiac hypertrophy accompanied by a pronounced increase in collagen I and III mRNA expression. Trained Mas-KO and trained WT presented increased Ang-(1–7) in the blood. However, only in trained-WT there was an increase in Ang-(1–7) in the LV. In summary, we showed that deletion of Mas in FVB/N mice produced an unbalance in RAS equilibrium increasing Ang II/AT1 arm and inducing deleterious cardiac effects as deposition of extracellular matrix proteins. These data indicate that Ang-(1–7)/Mas axis is an important counter-regulatory mechanism in physical training mediate cardiac adaptations.  相似文献   

20.
Long noncoding RNA (lncRNA) small nucleolar RNA host gene 1 (SNHG1) has been demonstrated to be upregulated and play a crucial role in the pathology of Parkinson's disease (PD). However, the exact role of SNHG1 and its underlying mechanisms in PD remains elusive. In this study, we found that SNHG1 and glycogen synthase kinase 3 beta (GSK3β) were upregulated, but miR-15b-5p was downregulated in 1-methyl-4-phenylpyridinium ion (MPP+)-treated SH-SY5Y cells. The upregulation of SNHG1 enhanced MPP+-induced cellular toxicity in SH-SY5Y cells, as shown by decreased cell viability, increased ROS production, and increased number of TdT-mediated dUTP Nick-End labeling-positive cells, accompanied with the upregulation of cleaved caspase 3 and elevation of cytochrome C release. Meanwhile, SNHG1 knockdown presented the converse effects. SNHG1 was demonstrated to interact with miR-15b-5p. Moreover, SNHG1 could attenuate the inhibitory effects of miR-15b-5p on MPP+-induced cytotoxicity and production of ROS. Besides, GSK3β was identified as a direct target of miR-15b-5p. The inhibitory effects of SNHG1 knockdown or miR-15b-5p overexpression on MPP+-induced cytotoxicity and reactive oxygen species (ROS) production were abrogated by upregulation of GSK3β. Taken together, these results demonstrate that upregulated lncRNA SNHG1 promotes MPP+-induced cytotoxicity and ROS production through the miR-15b-5p/GSK3β axis in human dopaminergic SH-SY5Y cells, suggesting that SNHG1 may act as a potential therapeutic target for PD treatment in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号