首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Curcumin, a natural polyphenolic and yellow pigment obtained from the spice turmeric, has strong antioxidative, anti-inflammatory, and antibacterial properties. Due to these properties, curcumin has been used as a remedy for the prevention and treatment of skin aging and disorders such as psoriasis, infection, acne, skin inflammation, and skin cancer. Curcumin has protective effects against skin damage caused by chronic ultraviolet B radiation. One of the challenges in maximizing the therapeutic potential of curcumin is its low bioavailability, limited aqueous solubility, and chemical instability. In this regard, the present review is focused on recent studies concerning the use of curcumin for the treatment of skin diseases, as well as offering new and efficient strategies to optimize its pharmacokinetic profile and increase its bioavailability.  相似文献   

2.
3.
Cholinesterase enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are traditionally associated with the termination of acetylcholine mediated neural signaling. The fact that these ubiquitous enzymes are also found in tissues not involved in neurotransmission has led to search for alternative functions for these enzymes. Cholinesterases are reported to be involved in many lipid related disease states. Taking into view that lipases and cholinesterases belong to the same enzyme class and by comparing the catalytic sites, we propose a new outlook on the link between BChE and lipid metabolism. The lipogenic substrates of BChE that have recently emerged in contrast to traditional cholinesterase substrates are explained through the hydrolytic capacity of BChE for ghrelin, 4-methyumbelliferyl (4-mu) palmitate, and arachidonoylcholine and through endogenous lipid mediators such as cannabinoids like anandamide and essential fatty acids. The abundance of BChE in brain, intestine, liver, and plasma, tissues with active lipid metabolism, supports the idea that BChE may be involved in lipid hydrolysis. BChE is also regulated by various lipids such as linoleic acid, alpha-linolenic acid or dioctanoylglycerol, whereas AChE is inhibited. The finding that BChE is able to hydrolyze 4-mu palmitate at a pH where lipases are less efficient points to its role as a backup in lipolysis. In diseases such as Alzheimer, in which elevated BChE and impaired lipid levels are observed, the lipolytic activity of BChE might be involved. It is possible to suggest that fatty acids such as 4-mu palmitate, ghrelin, arachidonoylcholine, essential fatty acids, and other related lipid mediators regulate cholinesterases, which could lead to some sort of compensatory mechanism at high lipid concentrations.

  相似文献   


4.
The effect of retinol deficiency and curcumin/turmeric on lipid peroxidation and fatty acid profile was studied in liver, kidney, spleen and brain microsomes of rats. Results revealed an increase in lipid peroxidation in retinol deficient liver by 32%, kidney 30%, spleen 24% and brain 43% compared to the controls. Feeding 0.1% curcumin or turmeric for three weeks in diet to retinol deficient rats reduced the lipid peroxidation respectively to 12.5 or 22.6%, in liver, 23.7 or 24.1% in kidney, 14.4 or 18.0% spleen and 16.0 or 31.4% in brain. Retinol deficiency lead to a reduction in the essential fatty acids. In liver C18:1 showed a reduction by 45.6%, C18:2 by 31.6% and C20:4 by 22.8%. In kidney C18:1 was reduced by 33.6%, 18:2 by 24.6% and 20:4 by 13.7%. In spleen and brain C18:1 showed a reduction by 10.2% and 33.9%, C18:2 by 37.9% and 12.1% and C20:4 by 15.7% and 35.3% respectively. Curcumin and turmeric fed group showed a significant increase in the abnormally reduced fatty acid levels. (Mol Cell Biochem 175: 43–48, 1997)  相似文献   

5.
The present study investigates the inhibition of lipid peroxidation by dehydrozingerone and curcumin in rat brain homogenates. Both the test compounds inhibited the formation of conjugated dienes and spontaneous lipid peroxidation. These compounds also inhibited lipid peroxidation induced by ferrous ions, ferric-ascorbate and ferric-ADP-ascorbate. In all these cases, curcumin was more active than dehydrozingerone and dl--tocopherol.  相似文献   

6.
Photodynamic treatment (PDT) can elicit a diverse range of cellular responses, including apoptotic cell death. Previously, we showed that PDT stimulates caspase-3 activation and subsequent cleavage and activation of p21-activated kinase 2 (PAK2) in human epidermal carcinoma A431 cells. Curcumin, the yellow pigment of Curcuma longa, is known to have anti-oxidant and anti-inflammatory properties. In the present study, using Rose Bengal (RB) as the photosensitizer, we investigated the effect of curcumin on PDT-induced apoptotic events in human epidermal carcinoma A431 cells. We report that curcumin prevented PDT-induced JNK activation, mitochondrial release of cytochrome c, caspase-3 activation, and cleavage of PAK2. Using the cell permeable dye DCF-DA as an indicator of reactive oxygen species (ROS) generation, we found that both curcumin and ROS scavengers (i.e., l-histidine, a-tocopherol, mannitol) abolished PDT-stimulated intracellular oxidative stress. Moreover, all these PDT-induced apoptotic changes in cells could be blocked by singlet oxygen scavengers (i.e., l-histidine, a-tocopherol), but were not affected by the hydroxyl radical scavenger mannitol. In addition, we found that SP600125, a JNK-specific inhibitor, reduced PDT-induced JNK activation as well as caspase-3 activation, indicating that JNK activity is required for PDT-induced caspase activation. Collectively, these results demonstrate that singlet oxygen triggers JNK activation, cytochrome c release, caspase activation and subsequent apoptotic biochemical changes during PDT and show that curcumin is a potent inhibitor for this process.  相似文献   

7.
Curcumin (CUR), a plant-derived compound, exhibits versatile antitumor effects. However, its poor hydrophilic property limits its application. To circumvent these drawbacks, we encapsulated CUR in liposomes modified with folic acid for better solubility and enhanced tumor targeting. This novel formulation was prepared by a film-dispersion method and characterized by size, zeta potential, drug-loading efficiency, and physical-condition stability. In vitro, cellular uptake efficiency, cytotoxicity, and apoptosis analysis by flow cytometry were performed to evaluate tumor targeting and killing ability. Results showed that the folate-receptor (FR)-targeted liposomal CUR (F-CUR-L) performed with improved solubility, sufficient stability, and enhanced antitumor activity. Mean diameter, zeta potential, and drug-loading efficiency were 182?nm, ?26 mV, and 68%, respectively, and this formulation exhibited stability in storage at 4°C for 1 month. In vitro, FR-positive cells endocytosed more F-CUR-L than nontargeted liposomal CUR (CUR-L); thus, the former induced more cellular proliferation inhibition and higher apoptosis than the latter, and the enhanced targeting could be hindered by 1?mM of free folic acid. Further, KB cells were more sensitive to F-CUR-L, compared to Hela cells. Finally, the two kinds of tumor cells treated with F-CUR-L also showed dose- and time-dependent apoptosis.  相似文献   

8.
Despite recent advancements in understanding of the biology of gastric cancer, treatment of patients with advanced gastric cancer remains a major problem. Among different type of phytochemicals, curcumin, a welltable -known phytochemical, has been shown to be a promising cancer chemopreventive agent. Pharmacokinetics, safety, and efficacy of curcumin have been evaluated in several clinical trials against numerous diseases, and for the treatment of human cancer. In the present review, we have collected in vitro and in vivo investigations and studied the chemosensitizing and anticancer effects of curcumin against the gastric cancer cells. In summary, curcumin has been found to have efficient chemosensitizing effect and also inhibits viability, proliferation, and migration of gastric cancer cells mainly via cell cycle arrest and induction of apoptosis by both mitochondrial-dependent and -independent pathways.  相似文献   

9.
长链非编码RNA(Long non-coding RNA,lncRNA)因参与多个层级上的生物进程而成为当下生命科学领域的研究热点.LncRNA可以与DNA、RNA和蛋白质等生物分子结合,并进一步影响靶基因的转录、翻译以及翻译后修饰等过程,从而发挥在细胞生理代谢过程中的调控作用.目前研究显示,lncRNA通过多种途径在...  相似文献   

10.
11.
Huntington’s disease (HD) is a devastating polyglutamine disorder characterized by extensive neurodegeneration and metabolic abnormalities at systemic, cellular and intracellular levels. Metabolic alterations in HD manifest as abnormal body weight, dysregulated biomolecule levels, impaired adipocyte functions, and defective energy state which exacerbate disease progression and pose acute threat to the health of challenged individuals in form of insulin resistance, cardiovascular disease, and energy crisis. To colossally mitigate disease symptoms, we tested the efficacy of curcumin in Drosophila model of HD. Curcumin is the bioactive component of turmeric (Curcuma longa Linn), well-known for its ability to modulate metabolic activities. We found that curcumin effectively managed abnormal body weight, dysregulated lipid content, and carbohydrate level in HD flies. In addition, curcumin administration lowered elevated reactive-oxygen-species levels in adult adipose tissue of diseased flies, and improved survival and locomotor function in HD flies at advanced disease stage. Altogether, these findings clearly suggest that curcumin efficiently attenuates metabolic derangements in HD flies and can prove beneficial in alleviating the complexities associated with HD.  相似文献   

12.
Liposomal formulation of curcumin is an important therapeutic agent for the treatment of various cancers. Despite extensive studies on the biological effects of this formulation in cancer treatment, much remains unknown about curcumin–liposome interactions. Understanding how different lipid bilayers respond to curcumin molecule may help us to design more effective liposomal curcumin. Here, we used molecular dynamics simulation method to investigate the behavior of curcumin in two lipid bilayers commonly used in preparation of liposomal curcumin, namely dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylglycerol (DMPG). First, the free energy barriers for translocation of one curcumin molecule from water to the lipid bilayer were determined by using the potential of mean force (PMF). The computed free energy profile exhibits a global minimum at the solvent–headgroup interface (LH region) for both lipid membranes. We also evaluated the free energy difference between the equilibrium position of curcumin in the lipid bilayer and bulk water as the excess chemical potential. Our results show that curcumin has the higher affinity in DMPG compared to DPPC lipid bilayer (?8.39 vs. ?1.69 kBT) and this is related to more hydrogen bond possibility for curcumin in DMPG lipid membrane. Next, using an unconstrained molecular dynamic simulation with curcumin initially positioned at the center of lipid bilayer, we studied various properties of each lipid bilayer system in the presence of curcumin molecule that was in full agreement with PMF and experimental data. The results of these simulation studies suggest that membrane composition could have a large effect on interaction of curcumin–lipid bilayer.  相似文献   

13.
Abstract

Curcumin (diferuloylmethane), the active ingredient in the eastern spice turmeric (Curcuma longa), has been shown to inhibit the activities of numerous enzymes and signaling molecules involved in cancer, bacterial and viral infections and inflammatory diseases. We have investigated the inhibitory activities of curcumin and chemically modified curcumin (CMC) derivatives toward lethal factor (LF), the proteolytic component of anthrax toxin produced by the bacterium Bacillus anthracis. Curcumin (Compound 1) appears to inhibit the catalytic activity of LF through a mixture of inhibitory mechanisms, without significant compromise to the binding of oligopeptide substrates, and one CMC derivative in particular, Compound 3 (4-phenylaminocarbonylbis-demethoxycurcumin), is capable of inhibiting LF with potency comparable with the parent compound, while also showing improved solubility and stability. The quantitative reduction in catalytic activity achieved by the different CMC derivatives appears to be a function of the proportion of the multiple mechanisms through which they inhibit the enzyme.  相似文献   

14.
体内肉碱来源及其对脂类代谢的影响   总被引:7,自引:0,他引:7  
肉碱是体内一种有多种生理功能的氨基酸类物质,其在脂类代谢过程中有重要的调节作用,近年来在甘油三脂血症、肾透析患者的脂代谢障碍的辅助治疗中取得了较好疗效。本文就肉碱的来源和对脂类代谢的影响进行了讨论。  相似文献   

15.
Effect of feeding 0.5% curcumin diet or 1% cholesterol diet was examined in albino rats rendered diabetic with streptozotocin injection. Diabetic rats maintained on curcumin diet for 8 weeks excreted comparatively less amounts of albumin, urea, creatinine and inorganic phosphorus. Urinary excretion of the electrolytes sodium and potassium were also significantly lowored under curcumin treatment. Dietary curcumin also partially reversed the abnormalities in plasma albumin, urea, creatinine and inorganic phosphorus in diabetic animals. On the other hand, glucose excretion or the fasting sugar level was unaffected by dietary curcumin and so also the body weights were not improved to any significant extent. Diabetic rats fed curcumin diet had a lowered relative liver weight at the end of the study compared to other diabetic rat groups. Diabetic rats fed a curcumin diet also showed lowered lipid peroxidation in plasma and urine when compared to other diabetic groups. The extent of lipid peroxidation on the other hand, was still higher in cholesterol fed diabetic groups compared to diabetic rats fed with control diet.Thus, the study reveals that curcumin feeding improves the metabolic status in diabetic condition, despite no effect on hyperglycemic status or the body weights. The mechanism by which curcumin improves this situation is probably by virtue of its hypocholesterolemic influence, antioxidant nature and free radical scavenging property.  相似文献   

16.
This study was conducted to determine the mechanism by which di‐2‐ethylhexyl phthalate (DEHP) exposure influences lipid metabolism of juvenile yellow catfish Tachysurus fulvidraco. Fish were exposed to three DEHP concentrations (0, 0·1 and 0·5 mg l?1 DEHP) for 8 weeks. Fatty acid synthase (FAS) activity significantly decreased with increasing DEHP concentrations, the highest value was in the Tween control group, whereas the lowest activities of carnitine palmitoyltransferase (CPT) and lipoprotein lipase (LPL) were in this group. The messenger (m)RNA levels of 6‐phospho‐gluconate dehydrogenase (6PGD), FAS and acetyl‐CoA carboxylase a (ACCa) significantly increased with increasing DEHP concentration, the highest values were in the 0·5 mg l?1 DEHP group. The mRNA level of peroxisome proliferator‐activated receptor γ (PPARγ) was lower in Tween control than in fish exposed to 0·1 and 0·5 mg l?1 DEHP. The highest mRNA level of ACCb was in the 0·1 mg l?1 DEHP group. These results indicate that DEHP exposure can disturb lipid metabolism at the enzymatic and mRNA levels in Pelteobagrus fulvidraco.  相似文献   

17.
18.
Diadenosine polyphosphates (Ap(x)A) are physiologically released and may be partly involved in the pathogenesis of diabetes mellitus. Ap(4)A (diadenosine tetraphosphate) leads to an increase in blood glucose while it decreases insulin levels in plasma. A possible link between Ap(x)A and diabetes mellitus-associated diseases such as insulin resistance and hyperlipidemia (plasma free fatty acids, cholesterol and its biosynthesis, triacylglycerols) has not been investigated yet. Parameters such as free fatty acid and cholesterol content in blood were determined enzymically. The biosynthesis of cholesterol and triacylglycerols was determined in HepG2 cells using the radioactive precursor [(14)C]-acetate and by using gas chromatography. Plasma free fatty acids were significantly decreased 5 and 10 min after an Ap(4)A bolus (0.75 mg kg(-1) b.w.) given to rats. Plasma cholesterol was reduced 5 and 60 min after Ap(4)A administration. LPDS (lipoprotein-deficient serum)-stimulated cholesterol biosynthesis in HepG2 cells was significantly reduced after 1 h incubation with Ap(4)A. Triacylglycerol (TAG) biosynthesis in HepG2 cells was not significantly influenced by Ap(4)A; there was just a tendency for a concentration-dependent decrease in TAG levels. In conclusion Ap(4)A as a diabetogenetic compound is not likely to be responsible for the development of insulin resistance or of hyperlipidemia. Parameters such as free fatty acids, cholesterol and triacylglycerols are not elevated by Ap(4)A, but are even decreased. Ap(4)A seems to be involved in the development of diabetes mellitus by increasing blood glucose and decreasing plasma insulin as shown earlier, but not in diabetes mellitus-associated diseases such as insulin resistance or hyperlipidemia.  相似文献   

19.
Curcumin, a dietary polyphenol and major constituent of Curcuma longa (Zingiberaceae), is extensively used as a spice in Asian countries. For ages, turmeric has been used in traditional medicine systems to treat various diseases, which was possible because of its anti‐inflammatory, antioxidant, anticancerous, antiepileptic, antidepressant, immunomodulatory, neuroprotective, antiapoptotic, and antiproliferative effects. Curcumin has potent antioxidant, anti‐inflammatory, antiapoptotic, neurotrophic activities, which support its plausible neuroprotective effects in neurodegenerative disease. However, there is limited information available regarding the clinical efficacy of curcumin in neurodegenerative cases. The low oral bioavailability of curcumin may be speculated as a plausible factor that limits its effects in humans. Therefore, utilization of several approaches for the enhancement of bioavailability may improve clinical outcomes. Furthermore, the use of nanotechnology and a targeted drug delivery system may improve the bioavailability of curcumin. The present review is designed to summarize the molecular mechanisms pertaining to the neuroprotective effects of curcumin and its nanoformulations.  相似文献   

20.
Animal models link ectopic lipid accumulation to renal dysfunction, but whether this process occurs in the human kidney is uncertain. To this end, we investigated whether altered renal TG and cholesterol metabolism results in lipid accumulation in human diabetic nephropathy (DN). Lipid staining and the expression of lipid metabolism genes were studied in kidney biopsies of patients with diagnosed DN (n = 34), and compared with normal kidneys (n = 12). We observed heavy lipid deposition and increased intracellular lipid droplets. Lipid deposition was associated with dysregulation of lipid metabolism genes. Fatty acid β-oxidation pathways including PPAR-α, carnitine palmitoyltransferase 1, acyl-CoA oxidase, and L-FABP were downregulated. Downregulation of renal lipoprotein lipase, which hydrolyzes circulating TGs, was associated with increased expression of angiopoietin-like protein 4. Cholesterol uptake receptor expression, including LDL receptors, oxidized LDL receptors, and acetylated LDL receptors, was significantly increased, while there was downregulation of genes effecting cholesterol efflux, including ABCA1, ABCG1, and apoE. There was a highly significant correlation between glomerular filtration rate, inflammation, and lipid metabolism genes, supporting a possible role of abnormal lipid metabolism in the pathogenesis of DN. These data suggest that renal lipid metabolism may serve as a target for specific therapies aimed at slowing the progression of glomerulosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号