首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peroxiredoxin 2 (Prx2) is a thiol protein that functions as an antioxidant, regulator of cellular peroxide concentrations, and sensor of redox signals. Its redox cycle is widely accepted to involve oxidation by a peroxide and reduction by thioredoxin/thioredoxin reductase. Interactions of Prx2 with other thiols are not well characterized. Here we show that the active site Cys residues of Prx2 form stable mixed disulfides with glutathione (GSH). Glutathionylation was reversed by glutaredoxin 1 (Grx1), and GSH plus Grx1 was able to support the peroxidase activity of Prx2. Prx2 became glutathionylated when its disulfide was incubated with GSH and when the reduced protein was treated with H2O2 and GSH. The latter reaction occurred via the sulfenic acid, which reacted sufficiently rapidly (k = 500 m−1 s−1) for physiological concentrations of GSH to inhibit Prx disulfide formation and protect against hyperoxidation to the sulfinic acid. Glutathionylated Prx2 was detected in erythrocytes from Grx1 knock-out mice after peroxide challenge. We conclude that Prx2 glutathionylation is a favorable reaction that can occur in cells under oxidative stress and may have a role in redox signaling. GSH/Grx1 provide an alternative mechanism to thioredoxin and thioredoxin reductase for Prx2 recycling.  相似文献   

2.
Peroxiredoxins are ubiquitously expressed proteins that reduce hydroperoxides using disulfur-reducing compounds as electron donors. Peroxiredoxins (Prxs) have been classified in two groups dependent on the presence of either one (1-Cys Prx) or two (2-Cys Prx) conserved cysteine residues. Moreover, 2-Cys Prxs, also named thioredoxin peroxidases, have peroxide reductase activity with the use of thioredoxin as biological electron donor. However, the biological reducing agent for the 1-Cys Prx has not yet been identified. We report here the characterization of a 1-Cys Prx from yeast Saccharomyces cerevisiae that we have named Prx1p. Prx1p is located in mitochondria, and it is overexpressed when cells use the respiratory pathway, as well as in response to oxidative stress conditions. We show also that Prx1p has peroxide reductase activity in vitro using the yeast mitochondrial thioredoxin system as electron donor. In addition, a mutated form of Prx1p containing the absolutely conserved cysteine as the only cysteine residue also shows thioredoxin-dependent peroxide reductase activity. This is the first example of 1-Cys Prx that has thioredoxin peroxidase activity. Finally, exposure of null Prx1p mutant cells to oxidant conditions reveals an important role of the mitochondrial 1-Cys Prx in protection against oxidative stress.  相似文献   

3.
2-Cys peroxiredoxin (Prx) is a novel cellular peroxidase that reduces peroxides in the presence of thioredoxin, thioredoxin reductase, and nicotinamide adenine dinucleotide phosphate (NADPH) and that functions in H(2)O(2)-mediated signal transduction. Recent studies have shown that 2-cys Prx can be inactivated by cysteine overoxidation in conditions of oxidative stress. Therefore, peroxidase activity, rather than the protein level, of 2-cys Prx is the more important measure to predict its cellular function. Here, we introduce a modified activity assay method for mammalian 2-cys Prx based on yeast nonselenium thioredoxin reductase. Yeast thioredoxin reductase is expressed in Escherichia coli cells and purified at high yield (40 mg/L of culture broth) as an active flavoprotein by combined diethyl aminoethyl (DEAE) and phenyl hydrophobic chromatography. The optimal concentrations of yeast thioredoxin and thioredoxin reductase required to achieve maximum mammalian 2-cys Prx activity are 3.0 and 1.5 microM, respectively. This modified assay method is useful for measuring 2-cys Prx activity in cell lysates and can also be adapted for a 96-well plate reader for high-throughput screening of chemical compounds that target 2-cys Prx.  相似文献   

4.
This study aimed to explore the role of dual specificity phosphatase 12 (DUSP12) in regulating myocardial ischemia–reperfusion (I/R) injury and the underlying mechanism. The expression of DUSP12 in myocardial tissues and heat-shock protein beta-8 (HSPB8) and mitophagy-related proteins in myocardial tissues and H9c2 cells were detected by western blot analysis. The serum creatine kinase isoenzymes (CK-MB) and lactate dehydrogenase (LDH), levels of reactive oxygen species and malondialdehyde, superoxide dismutase activity in myocardial tissues and H9c2 cells, and caspase-3 activity in H9c2 cells were analyzed by corresponding assay kits. The infarct area in the rat's heart was observed by triphenyl tetrazolium chloride staining. The apoptosis of myocardial cells in myocardial tissues and H9c2 cells was detected by terminal-deoxynucleotidyl transferase dUTP-biotin nick-end labeling assay. The interaction between DUSP12 and HSPB8 was clarified by the coimmunoprecipitation assay. The transfection efficacy of si-HSPB8#1 and si-HSPB8#2 in H9c2 cells was confirmed by real-time quantitative-polymerase chain reaction and western blot analysis. As a result, DUSP12 expression was downregulated in I/R rats, which was promoted by lentivirus-expressing DUSP12. DUSP12 overexpression reduced the serum creatine kinase isoenzymes (CK-MB) and LDH, decreased the infarct area in the rat's heart, and suppressed the apoptosis and oxidative stress in myocardial tissues. DUSP12 overexpression also upregulated the expression of HSPB8 to promote mitophagy. The coimmunoprecipitation assay indicated that DUSP12 could be combined with HSPB8. In addition, DUSP12 overexpression could inhibit hypoxia/reoxygenation-elicited apoptosis as well as oxidative stress in H9c2 cells by upregulating HSPB8 expression to promote mitophagy, which was countervailed by HSPB8 deficiency. In conclusion, DUSP12 overexpression decreased the apoptosis and oxidative stress in myocardial I/R injury through HSPB8-induced mitophagy.  相似文献   

5.
The RASSF1A tumor suppressor protein interacts with the pro-apoptotic mammalian STE20-like kinases MST1 and MST2 and induces their autophosphorylation and activation, but the mechanism of how RASSF1A activates MST1/2 is unclear. Okadaic acid treatment and PP2A knockdown promoted MST1/2 phosphorylation. Data from dephosphorylation assays and reduced activation of MST1/2 seen after RASSF1A depletion suggest that dephosphorylation of MST1/2 on Thr-183 and Thr-180 by PP2A is prevented by RASSF1A, shifting the balance of MST1/2 to the activated autophosphorylated form. In addition to preventing dephosphorylation, RASSF1A also stabilized the MST2 protein. Through binding to MST1/2, RASSF1A supports maintenance of MST1/2 phosphorylation, promoting an active state of the MST kinases and favoring induction of apoptosis. This is one of the first examples of a tumor suppressor acting as an inhibitor of a specific dephosphorylation pathway.  相似文献   

6.
Peroxynitrite is a reactive nitrogen species that can mediate protein tyrosine nitration, inactivating many proteins. We show that yeast mitochondrial peroxiredoxin (Prx1p), which belongs to the group 1-Cys-Prx, has thioredoxin-dependent peroxynitrite reductase activity. This activity was characterised in vitro with the recombinant mitochondrial Prx1p, the thioredoxin reductase Trr2p and the thioredoxin Trx3p, using a generator of peroxynitrite (SIN-1). Purified mitochondria from wild-type and null Prx1p or Trx3p yeast strains, exposed to SIN-1, showed a differential inactivation of manganese-containing superoxide dismutase activity. The above yeast strains were exposed to SIN-1 and examined under confocal microscopy. Prx1p or Trx3p-null cells showed a greater accumulation of peroxynitrite than wild-type ones. Our results indicate that this 1-Cys-Prx is a peroxynitrite reductase activity that uses reducing equivalents from NADPH through the mitochondrial thioredoxin system. Therefore, mitochondrial 1-Cys-peroxiredoxin/thioredoxin system constitutes an essential antioxidant defence against oxidative and nitrosative stress in yeast mitochondria.  相似文献   

7.
α-Tocopheryl phosphate (αTP) is a phosphorylated form of α-tocopherol. Since it is phosphorylated in the hydroxyl group that is essential for the antioxidant property of α-tocopherol, we hypothesized that αTP would modulate the antioxidant system, rather than being an antioxidant agent per se. α-TP demonstrated antioxidant activity in vitro against iron-induced oxidative stress in a mitochondria-enriched fraction preparation treated with 30 or 100 µM α-TP. However, this effect was not observed ex vivo with mitochondrial-enriched fraction from mice treated with an intracerebroventricular injection of 0.1 or 1 nmol/site of αTP. Two days after treatment (1 nmol/site αTP), peroxiredoxin 2 (Prx2) and glutathione reductase (GR) expression and GR activity were decreased in cerebral cortex and hippocampus. Glutathione content, glutathione peroxidase, and thioredoxin reductase activities were not affected by αTP. In conclusion, the persistent decrease in GR and Prx2 protein content is the first report of an in vivo effect of αTP on protein expression in the mouse brain, potentially associated to a novel and biologically relevant function of this naturally occurring compound.  相似文献   

8.
Cereal seed cells contain different mechanisms for protection against the oxidative stress that occurs during maturation and germination. One such mechanism is based on the antioxidant activity of a 1-Cys peroxiredoxin (1-Cys Prx) localized in the nuclei of aleurone and scutellum cells. However, nothing is known about the mechanism of activation of this enzyme. Here, we describe the pattern of localization of NADPH thioredoxin reductase (NTR) in developing and germinating wheat seeds using an immunocytochemical analysis. The presence of NTR in transfer cells, vascular tissue, developing embryo and root meristematic cells, agrees with the localization of thioredoxin h (Trx h ), and supports the important function of the NTR/Trx system in cell proliferation and communication. Interestingly, NTR is found in the nuclei of seed cells suffering oxidative stress, thus showing co-localization with Trx h and 1-Cys Prx. To test whether the NTR/Trx system serves as a reductant of the 1-Cys Prx, we cloned a full-length cDNA encoding 1-Cys Prx from wheat, and expressed the recombinant protein in Escherichia coli . Using the purified components, we show NTR-dependent activity of the 1-Cys Prx. Mutants of the 1-Cys Prx allowed us to demonstrate that the peroxidatic residue of the wheat enzyme is Cys46, which is overoxidized in vitro under oxidant conditions. Analysis of extracts from developing and germinating seeds confirmed 1-Cys Prx overoxidation in vivo . Based on these results, we propose that NADPH is the source of the reducing power to regenerate 1-Cys Prx in the nuclei of seed cells suffering oxidative stress, in a process that is catalyzed by NTR.  相似文献   

9.
Cells are endowed with several overlapping peroxide-degrading systems whose relative importance is a matter of debate. In this study, three different sources of neural cells (rat hippocampal slices, rat C6 glioma cells, and mouse N2a neuroblastoma cells) were used as models to understand the relative contributions of individual peroxide-degrading systems. After a pretreatment (30 min) with specific inhibitors, each system was challenged with either H2O2 or cumene hydroperoxide (CuOOH), both at 100 μM. Hippocampal slices, C6 cells, and N2a cells showed a decrease in the H2O2 decomposition rate (23-28%) by a pretreatment with the catalase inhibitor aminotriazole. The inhibition of glutathione reductase (GR) by BCNU (1,3-bis(2-chloroethyl)-1-nitrosourea) significantly decreased H2O2 and CuOOH decomposition rates (31-77%). Inhibition of catalase was not as effective as BCNU at decreasing cell viability (MTT assay) and cell permeability or at increasing DNA damage (comet test). Impairing the thioredoxin (Trx)-dependent peroxiredoxin (Prx) recycling by thioredoxin reductase (TrxR) inhibition with auranofin neither potentiated peroxide toxicity nor decreased the peroxide-decomposition rate. The results indicate that neural peroxidatic systems depending on Trx/TrxR for recycling are not as important as those depending on GSH/GR. Dimer formation, which leads to Prx2 inactivation, was observed in hippocampal slices and N2a cells treated with H2O2, but not in C6 cells. However, Prx-SO3 formation, another form of Prx inactivation, was observed in all neural cell types tested, indicating that redox-mediated signaling pathways can be modulated in neural cells. These differences in Prx2 dimerization suggest specific redox regulation mechanisms in glia-derived (C6) compared to neuron-derived (N2a) cells and hippocampal slices.  相似文献   

10.
By following peroxiredoxin I (Prx I)-dependent NADPH oxidation spectrophotometrically, we observed that Prx I activity decreased gradually with time. The decay in activity was coincident with the conversion of Prx I to a more acidic species as assessed by two-dimensional gel electrophoresis. Mass spectral analysis and studies with Cys mutants determined that this shift in pI was due to selective oxidation of the catalytic site Cys(51)-SH to Cys(51)-SO(2)H. Thus, Cys(51)-SOH generated as an intermediate during catalysis appeared to undergo occasional further oxidation to Cys(51)-SO(2)H, which cannot be reversed by thioredoxin. The presence of H(2)O(2) alone was not sufficient to cause oxidation of Cys(51) to Cys(51)-SO(2)H. Rather, the presence of complete catalytic components (H(2)O(2), thioredoxin, thioredoxin reductase, and NADPH) was necessary, indicating that such hyperoxidation occurs only when Prx I is engaged in the catalytic cycle. Likewise, hyperoxidation of Cys(172)/Ser(172) mutant Prx I required not only H(2)O(2), but also a catalysis-supporting thiol (dithiothreitol). Kinetic analysis of Prx I inactivation in the presence of a low steady-state level (<1 microm) of H(2)O(2) indicated that Prx I was hyperoxidized at a rate of 0.072% per turnover at 30 degrees C. Hyperoxidation of Prx I was also detected in HeLa cells treated with H(2)O(2).  相似文献   

11.
Peroxiredoxins (Prxs) are a ubiquitously expressed family of thiol peroxidases that reduce hydrogen peroxide, peroxynitrite, and hydroperoxides using a highly conserved cysteine. There is substantial evidence that oxidative stress elicited by amyloid beta (Abeta) accumulation is a causative factor in the pathogenesis of Alzheimer disease (AD). Here we show that Abeta-resistant PC12 cell lines exhibit increased expression of multiple Prx isoforms with reduced cysteine oxidation. Abeta-resistant PC12 cells also display higher levels of thioredoxin and thioredoxin reductase, two enzymes critical for maintaining Prx activity. PC12 cells and rat primary hippocampal neurons transfected with wild type Prx1 exhibit increased Abeta resistance, whereas mutant Prx1, lacking a catalytic cysteine, confers no protection. Using an antibody that specifically recognizes sulfinylated and sulfonylated Prxs, it is demonstrated that primary rat cortical nerve cells exposed to Abeta display a time-dependent increase in cysteine oxidation of the catalytic site of Prxs that can be blocked by the addition of the thiol-antioxidant N-acetylcysteine. In support of previous findings, expression of Prx1 is higher in post-mortem human AD cortex tissues than in age-matched controls. In addition, two-dimensional gel electrophoresis and mass spectrometry analysis revealed that Prx2 exists in a more oxidized state in AD brains than in control brains. These findings suggest that increased Prx expression and resistance to sulfhydryl oxidation in Abeta-resistant nerve cells is a compensatory response to the oxidative stress initiated by chronic pro-oxidant Abeta exposure.  相似文献   

12.
The thioredoxin system, which consists of a family of proteins, including thioredoxin (Trx), peroxiredoxin (Prx), and thioredoxin reductase (TrxR), plays a critical role in the defense against oxidative stress by removing harmful hydrogen peroxide (H2O2). Specifically, Trx donates electrons to Prx to remove H2O2 and then TrxR maintains the reduced Trx concentration with NADPH as the cofactor. Despite a great deal of kinetic information gathered on the removal of H2O2 by the Trx system from various sources/species, a mechanistic understanding of the associated enzymes is still not available. We address this issue by developing a thermodynamically consistent mathematical model of the Trx system which entails mechanistic details and provides quantitative insights into the kinetics of the TrxR and Prx enzymes. Consistent with experimental studies, the model analyses of the available data show that both enzymes operate by a ping-pong mechanism. The proposed mechanism for TrxR, which incorporates substrate inhibition by NADPH and intermediate protonation states, well describes the available data and accurately predicts the bell-shaped behavior of the effect of pH on the TrxR activity. Most importantly, the model also predicts the inhibitory effects of the reaction products (NADP+ and Trx(SH)2) on the TrxR activity for which suitable experimental data are not available. The model analyses of the available data on the kinetics of Prx from mammalian sources reveal that Prx operates at very low H2O2 concentrations compared to their human parasite counterparts. Furthermore, the model is able to predict the dynamic overoxidation of Prx at high H2O2 concentrations, consistent with the available data. The integrated Prx–TrxR model simulations well describe the NADPH and H2O2 degradation dynamics and also show that the coupling of TrxR- and Prx-dependent reduction of H2O2 allowed ultrasensitive changes in the Trx concentration in response to changes in the TrxR concentration at high Prx concentrations. Thus, the model of this sort is very useful for integration into computational H2O2 degradation models to identify its role in physiological and pathophysiological functions.  相似文献   

13.
14.
The thioredoxin/thioredoxin reductase system has been studied as regenerative machinery for proteins inactivated by oxidative stress in vitro and in cultured endothelial cells. Mammalian glyceraldehyde-3-phosphate dehydrogenase was used as the main model enzyme for monitoring the oxidative damage and the regeneration. Thioredoxin and its reductase purified from bovine liver were used as the regenerating system. The physiological concentrations (2-14 microM) of reduced thioredoxin, with 0.125 microM thioredoxin reductase and 0.25 mM NADPH, regenerated H2O2-inactivated glyceraldehyde-3-phosphate dehydrogenase and other mammalian enzymes almost completely within 20 min at 37 degrees C. Although the treatment of endothelial cells with 0.2-12 mM H2O2 for 5 min resulted in a marked decrease in the activity of glyceraldehyde-3-phosphate dehydrogenase, it had no effect on the activities of thioredoxin and thioredoxin reductase. Essentially all of the thioredoxin in endothelial cells at control state was in the reduced form and 70-85% remained in the reduced form even after the H2O2 treatment. The inactivated glyceraldehyde-3-phosphate dehydrogenase in a cell lysate prepared from the H2O2-treated endothelial cells was regenerated by incubating the lysate with 3 mM NADPH at 37 degrees C and the antiserum raised against bovine liver thioredoxin inhibited the regeneration. The inhibition of thioredoxin reductase activity by 13-cis-retinoic acid resulted in a decrease in the regeneration of glyceraldehyde-3-phosphate dehydrogenase in the H2O2-treated endothelial cells. The present findings provide evidence that thioredoxin is involved in the regeneration of proteins inactivated by oxidative stress in endothelial cells.  相似文献   

15.
To investigate the possible mechanisms of glutathione reductase (GR) in protecting against oxidative stress, we obtained transgenic tobacco (Nicotiana tabacum) plants with 30–70% decreased GR activity by using a gene encoding tobacco chloroplastic GR for the RNAi construct. We investigated the responses of wild type and transgenic plants to oxidative stress induced by application of methyl viologen in vivo. Analyses of CO2 assimilation, maximal efficiency of photosystem II photochemistry, leaf bleaching, and oxidative damage to lipids demonstrated that transgenic plants exhibited enhanced sensitivity to oxidative stress. Under oxidative stress, there was a greater decrease in reduced to oxidized glutathione ratio but a greater increase in reduced glutathione in transgenic plants than in wild type plants. In addition, transgenic plants showed a greater decrease in reduced ascorbate and reduced to oxidized ascorbate ratio than wild type plants. However, there were neither differences in the levels of NADP and NADPH and in the total foliar activities of monodehydroascorbate reductase and dehydroascorbate reductase between wild type and transgenic plant. MV treatment induced an increase in the activities of GR, ascorbate peroxidase, superoxide dismutase, and catalase. Furthermore, accumulation of H2O2 in chloroplasts was observed in transgenic plants but not in wild type plants. Our results suggest that capacity for regeneration of glutathione by GR plays an important role in protecting against oxidative stress by maintaining ascorbate pool and ascorbate redox state.  相似文献   

16.
The microaerophilic protozoan parasite Giardia intestinalis, causative of one of the most common human intestinal diseases worldwide, infects the mucosa of the proximal small intestine, where it has to cope with O2 and nitric oxide (NO). Elucidating the antioxidant defense system of this pathogen lacking catalase and other conventional antioxidant enzymes is thus important to unveil novel potential drug targets. Enzymes metabolizing O2, NO and superoxide anion (O2 −•) have been recently reported for Giardia, but it is yet unknown how the parasite copes with H2O2 and peroxynitrite (ONOO). Giardia encodes two yet uncharacterized 2-cys peroxiredoxins (Prxs), GiPrx1a and GiPrx1b. Peroxiredoxins are peroxidases implicated in virulence and drug resistance in several parasitic protozoa, able to protect from nitroxidative stress and repair oxidatively damaged molecules. GiPrx1a and a truncated form of GiPrx1b (deltaGiPrx1b) were expressed in Escherichia coli, purified and functionally characterized. Both Prxs effectively metabolize H2O2 and alkyl-hydroperoxides (cumyl- and tert-butyl-hydroperoxide) in the presence of NADPH and E. coli thioredoxin reductase/thioredoxin as the reducing system. Stopped-flow experiments show that both proteins in the reduced state react with ONOO rapidly (k = 4×105 M−1 s−1 and 2×105 M−1 s−1 at 4°C, for GiPrx1a and deltaGiPrx1b, respectively). Consistent with a protective role against oxidative stress, expression of GiPrx1a (but not deltaGiPrx1b) is induced in parasitic cells exposed to air O2 for 24 h. Based on these results, GiPrx1a and deltaGiPrx1b are suggested to play an important role in the antioxidant defense of Giardia, possibly contributing to pathogenesis.  相似文献   

17.
Cellular redox balance is maintained by various antioxidative systems. Among those is the thioredoxin system, consisting of thioredoxin, thioredoxin reductase, and NADPH. In the present study, we examined the effects of caloric restriction (2 mo) on the expression of the cytosolic and mitochondrial thioredoxin system in skeletal muscle and heart of senescent and young rats. Mitochondrial thioredoxin reductase (TrxR2) is significantly reduced in aging skeletal and cardiac muscle and renormalized after caloric restriction, while the cytosolic isoform remains unchanged. Thioredoxins (mitochondrial Trx2, cytosolic Trx1) are not influenced by caloric restriction. In skeletal and cardiac muscle of young rats, caloric restriction has no effect on the expression of thioredoxins or thioredoxin reductases. Enforced reduction of TrxR2 (small interfering RNA) in myoblasts under exposure to ceramide or TNF-alpha causes a dramatic enhancement of nucleosomal DNA cleavage, caspase 9 activation, and mitochondrial reactive oxygen species release, together with reduced cell viability, while this TrxR2 reduction is without effect in unstimulated myoblasts under basal conditions. Oxidative stress in vitro (H2O2 in C2C12 myoblasts and myotubes) results in different changes: TrxR2, Trx2, and Trx1 are induced without alterations in the cytosolic thioredoxin reductase isoforms. Thus aging is associated with a TrxR2 reduction in skeletal muscle and heart, which enhances susceptibility to apoptotic stimuli but is renormalized after short-term caloric restriction. Exogenous oxidative stress does not result in these age-related changes of TrxR2.  相似文献   

18.
Thiol redox state (TRS) refers to the balance between reduced thiols and their corresponding disulfides and is mainly reflected by the ratio of reduced and oxidized glutathione (GSH/GSSG). A decrease in GSH/GSSG, which reflects a state of thiol oxidative stress, as well as thiol modifications such as S-glutathionylation, has been shown to have important implications in a variety of cardiovascular diseases. Therefore, research models for inducing thiol oxidative stress are important tools for studying the pathophysiology of these disease states as well as examining the impact of pharmacological interventions on thiol pathways. The purpose of this study was to evaluate the use of a dithiocarbamate derivative, 2-acetylamino-3-[4-(2-acetylamino-2-carboxyethylsulfanylthiocarbonylamino)phenylthiocarbamoylsulfanyl]propionic acid (2-AAPA), as a pharmacological model of thiol oxidative stress by examining the extent of thiol modifications induced in H9c2 rat cardiomyocytes and its impact on cellular functions. The extent of thiol oxidative stress produced by 2-AAPA was also compared to other models of oxidative stress including hydrogen peroxide (H2O2), diamide, buthionine sulfoximine, and N,N׳-bis(2-chloroethyl)-N-nitroso-urea. Results indicated that 2-AAPA effectively inhibited glutathione reductase and thioredoxin reductase activities and decreased the GSH/GSSG ratio by causing a significant accumulation of GSSG. 2-AAPA also increased the formation of protein disulfides as well as S-glutathionylation. The alteration in TRS led to a loss of mitochondrial membrane potential, release of cytochrome c, and increase in reactive oxygen species production. Compared to other models, 2-AAPA is more potent at creating a state of thiol oxidative stress with lower cytotoxicity, higher specificity, and more pharmacological relevance, and could be utilized as a research tool to study TRS-related normal and abnormal biochemical processes in cardiovascular diseases.  相似文献   

19.
An NADPH thioredoxin reductase C was co-purified with a 2-Cys peroxiredoxin by the combination of anion exchange chromatography and electroelution from gel slices after native PAGE from a thermophilic cyanobacterium Thermosynechococcus elongatus as an NAD(P)H oxidase complex induced by oxidative stress. The result provided a strong evidence that the NADPH thioredoxin reductase C interacts with the 2-Cys peroxiredoxin in vivo. An in vitro reconstitution assay with purified recombinant proteins revealed that both proteins were essential for an NADPH-dependent reduction of H2O2. These results suggest that the reductase transfers the reducing power from NADPH to the peroxiredoxin, which reduces peroxides in the cyanobacterium under oxidative stress. In contrast with other NADPH thioredoxin reductases, the NADPH thioredoxin reductase C contains a thioredoxin-like domain in addition to an NADPH thioredoxin reductase domain in the same polypeptide. Each domain contains a conserved CXYC motif. A point mutation at the CXYC motif in the NADPH thioredoxin reductase domain resulted in loss of the NADPH oxidation activity, while a mutation at the CXYC motif in the thioredoxin-like domain did not affect the electron transfer, indicating that this motif is not essential in the electron transport from NADPH to the 2-Cys peroxiredoxin.  相似文献   

20.
The mammalian cytosolic thioredoxin system, comprising thioredoxin (Trx), Trx reductase, and NADPH, is the major protein-disulfide reductase of the cell and has numerous functions. Besides the active site thiols, human Trx1 contains three non-active site cysteine residues at positions 62, 69, and 73. A two-disulfide form of Trx1, containing an active site disulfide between Cys-32 and Cys-35 and a non-active site disulfide between Cys-62 and Cys-69, is inactive either as a disulfide reductase or as a substrate for Trx reductase. This could possibly provide a structural switch affecting Trx1 function during oxidative stress and redox signaling. We found that two-disulfide Trx1 was generated in A549 cells under oxidative stress. In vitro data showed that two-disulfide Trx1 was generated from oxidation of Trx1 catalyzed by peroxiredoxin 1 in the presence of H2O2. The redox Western blot data indicated that the glutaredoxin system protected Trx1 in HeLa cells from oxidation caused by ebselen, a superfast oxidant for Trx1. Our results also showed that physiological concentrations of glutathione, NADPH, and glutathione reductase reduced the non-active site disulfide in vitro. This reaction was stimulated by glutaredoxin 1 via the so-called monothiol mechanism. In conclusion, reversible oxidation of the non-active site disulfide of Trx1 is suggested to play an important role in redox regulation and cell signaling via temporal inhibition of its protein-disulfide reductase activity for the transmission of oxidative signals under oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号