首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Deregulated miRNAs participate in colorectal carcinogenesis. In this study, miR-218 was found to be downregulated in human colorectal cancer (CRC) by miRNA profile assay. miR-218 was silenced or downregulated in all five colon cancer cells (Caco2, HT29, SW620, HCT116 and LoVo) relative to normal colon tissues. miR-218 expression was significantly lower in 46 CRC tumor tissues compared with their adjacent normal tissues (P < 0.001). Potential target genes of miR-218 were predicted and BMI1 polycomb ring finger oncogene (BMI-1), a polycomb ring finger oncogene, was identified as one of the potential targets. Upregulation of BMI-1 was detected in CRC tumors compared with adjacent normal tissues (P < 0.001) and in all five colon cancer cell lines. Transfection of miR-218 in colon cancer cell lines (HCT116, HT29) significantly reduced luciferase activity of the wild-type construct of BMI-1 3′ untranslated region (3′UTR) (P < 0.001), whereas this effect was not seen in the construct with mutant BMI-1 3′UTR, indicating a direct and specific interaction of miR-218 with BMI-1. Ectopic expression of miR-218 in HCT116 and HT29 cells suppressed BMI-1 mRNA and protein expression. In addition, miR-218 suppressed protein expression of BMI-1 downstream targets of cyclin-dependent kinase 4, a cell cycle regulator, while upregulating protein expression of p53. We further revealed that miR-218 induced apoptosis (P < 0.01), inhibited cell proliferation (P < 0.05) and promoted cell cycle arrest in the G2 phase (P < 0.01). In conclusion, miR-218 plays a pivotal role in CRC development through inhibiting cell proliferation and cycle progression and promoting apoptosis by downregulating BMI-1.  相似文献   

2.
Liver receptor homologue 1 (LRH-1) is an orphan nuclear receptor that has been implicated in the progression of breast, pancreatic and colorectal cancer (CRC). To determine mechanisms underlying growth promotion by LRH-1 in CRC, we undertook global expression profiling following siRNA-mediated LRH-1 knockdown in HCT116 cells, which require LRH-1 for growth and in HT29 cells, in which LRH-1 does not regulate growth. Interestingly, expression of the cell cycle inhibitor p21 (CDKN1A) was regulated by LRH-1 in HCT116 cells. p21 regulation was not observed in HT29 cells, where p53 is mutated. p53 dependence for the regulation of p21 by LRH-1 was confirmed by p53 knockdown with siRNA, while LRH-1-regulation of p21 was not evident in HCT116 cells where p53 had been deleted. We demonstrate that LRH-1-mediated p21 regulation in HCT116 cells does not involve altered p53 protein or phosphorylation, and we show that LRH-1 inhibits p53 recruitment to the p21 promoter, likely through a mechanism involving chromatin remodelling. Our study suggests an important role for LRH-1 in the growth of CRC cells that retain wild-type p53.  相似文献   

3.
Scutellaria baicalensis (SB) has been shown to improve the therapeutic effects of colorectal cancer (CRC) and perform well for reversing radio-resistance in different cancers. However, its potential function and mechanism related to radio-resistance in CRC has not been explored. A radio-resistant human CRC cell line (HCT116R) was applied. A network pharmacological analysis was performed to reveal the potential mechanism of SB for reversing radio-resistance in CRC, and computational pathological analysis was applied to indicate the clinicopathological significance of the key targets. Then, our hypothesis was further verified by molecular docking. The network pharmacology analysis showed that wogonin is the key compound of SB for reversing the radio-resistance of CRC. A Kyoto Encyclopedia of Genes and Genomes analysis showed that the genes for SB that reverse radio-resistance in CRC are mainly involved in steroid hormone biosynthesis. An enrichment analysis pointed out that Sulfotransferase family 2B member 1 (SULT2B1) is a potentially vital gene. SULT2B1 was demonstrated as being highly expressed in CRC and upregulated in radio-resistant rectal tissues or cell lines. A CCK-8 and clone formation test showed that the viability and clone formation ability of HCT116R were significantly decreased by wogonin combined with radiotherapy, compared to radiotherapy alone. By contrast, flow cytometry revealed that the apoptosis of HCT116R was significantly increased when wogonin treatment combined with radiotherapy, compared with radiotherapy alone. Molecular docking verification indicated that SULT2B1 and wogonin have a good binding ability. Taken together, SULT2B1 may be the potential drug target in treating radio-resistant CRC. Wogonin may be the core compound of SB for reversing radio-resistance in CRC by targeting SULT2B1.  相似文献   

4.
Colorectal cancer (CRC) is the second leading cause of cancer‐related deaths worldwide. However, a biomarker for a sensitive and simple diagnostic test and highly effective target therapy of CRC is still clinically unavailable. This study is to investigate the evidence and significance of plasma GPC1 positive exosomes as a biomarker of CRC. Results showed that GPC1+ exosomes were successfully isolated from tissues and plasma. The percentage of GPC1+ exosomes and the GPC1 protein expression in exosomes from tumour tissues and plasma of CRC patients before surgical treatment was significantly elevated compared to that in the peritumoural tissues and the plasma of healthy controls. miR‐96‐5p and miR‐149 expression in tumour tissues and plasma of CRC patients as well as in the GPC1+ exosomes from CRC patients were significantly decreased compared to that in the peritumoural tissues and the plasma of healthy controls. Two months after surgical treatment, levels of all tested markers significantly normalized. Overexpression of miR‐96‐5p and miR‐149 significantly decreased GPC1 expression in HT‐29 and HCT‐116 cells, xenograft tumours, plasma in mice bearing HT‐29 and HCT‐116 tumours, and the secretion of GPC1+ exosomes from the HT‐29 and HCT‐116 cells and xenograft tumours. Overexpression of miR‐96‐5p and miR‐149 significantly decreased cell viability and increased cell apoptosis in HT‐29 and HCT‐116 cells, and inhibited the growth of xenograft HT‐29 and HCT‐116 tumours. In conclusion, the increased plasma GPC1+ exosomes and reduced plasma miR‐96‐5p and miR‐149 expression are specific markers for the diagnosis of CRC and targets for the therapy of CRC.  相似文献   

5.
Tumor metastasis is the leading cause of death in cancer patients. Identifying metastatic biomarkers in tumor cells would help cancer diagnoses and the development of therapeutic targets. Yes-associated protein (YAP) plays an important role in organ development and has gained much attention in tumorigenesis. However, the role of YAP and the underlying mechanism in tumor metastasis of colorectal cancer (CRC) is still unclear. In this study, we generated metastatic 116-LM cells from the HCT116 CRC cell line. We found that the capacity for tumor aggressiveness was elevated in 116-LM cells and identified that YAP and its mRNA level were upregulated in 116-LM cells. Moreover, expression of YAP was found to correlate with epithelial-mesenchymal transition (EMT) marker expressions, whereas suppression of YAP decreased EMT marker expressions and impeded tumor migration and invasion. Additionally, upregulation of YAP was identified in colon cancer patients, and it was correlated with EMT gene expressions. Furthermore, we identified LBH589, a histone deacetylase inhibitor, that was capable of inhibiting tumor growth and aggressiveness in both HCT116 and 116-LM cells. LBH589 potentially inhibited YAP and its mRNA expression, accompanied by diminished expressions of YAP downstream genes and EMT markers. Together, YAP plays a crucial role in aggressiveness and metastasis of CRC, and YAP may be an attractive therapeutic target.  相似文献   

6.
Fu  Qianfeng  Jiang  Yuling  Zhang  Daxin  Liu  Xiuli  Guo  Junfeng  Zhao  Jinlong 《Molecular and cellular biochemistry》2016,413(1-2):189-198

Valosin-containing protein (VCP) was previously shown to exhibit high expression in colorectal cancer (CRC) tissues as compared with that in normal tissues; however, the role of VCP in human CRC cells has remained to be elucidated. Two colorectal cancer cell lines HCT116 and RKO were used in the experiment. We introduced lentiviral constructs expressing VCP to infect RKO cells and lenti-shRNA targeting VCP into HCT116 cells, respectively. Cell proliferation, invasion, apoptosis, and cell cycle arrest were subsequently examined by MTT assay, transwell chamber assay, flow cytometry, and western blot analysis, respectively. Furthermore, a subcutaneous tumor mouse model and lung metastasis model was used to investigate the effects of VCP on the growth and metastasis of CRC cells in vivo. VCP knockdown was shown to inhibit cell proliferation, chemoresistance and invasion, and induce apoptosis in the HCT116 CRC cells, whereas VCP over-expression suppressed apoptosis and chemoresponse, promoted proliferation and invasion of the RKO CRC cells. In addition, in the subcutaneous tumor and lung metastasis mouse model, VCP knockdown in HCT116 cells suppressed carcinogenesis and metastasis in vivo. The findings of the present study indicated that VCP is very important for the proliferation and metastasis of CRC; therefore, targeting VCP and its downstream targets may represent novel therapies for the treatment of CRC.

  相似文献   

7.
The abilities of mutated active K-RAS and H-RAS proteins, in an isogenic human carcinoma cell system, to modulate the activity of signaling pathways and cell cycle progression following exposure to ionizing radiation is largely unknown. Loss of K-RAS D13 expression in parental HCT116 colorectal carcinoma cells blunted basal ERK1/2, AKT and JNK1/2 activity by ~70%. P38 activity was not detected. Deletion of the allele to express activated K-RAS nearly abolished radiation-induced activation of all signaling pathways. Expression of H-RAS V12 in HCT116 cells lacking an activated RAS molecule (H-RAS V12 cells) restored basal ERK1/2 and AKT activity to that observed in parental cells, but did not restore or alter basal JNK1/2 and p38 activity. In parental cells radiation (1 Gy) caused stronger ERK1/2 pathway activation compared to that of the PI3K/AKT pathway. In H-RAS V12 cells radiation caused stronger PI3K/AKT pathway activation compared to that of the ERK1/2 pathway. Radiation (1 Gy) promoted S phase entry in parental HCT116 cells within 24h, but not in either HCT116 cells lacking K-RAS D13 expression or in H-RAS V12 cells. In parental cells radiation-stimulated S phase entry correlated with ERK1/2-, JNK1/2- and PI3K-dependent increased expression of cyclin D1 and cyclin A, and to a lesser extent cyclin E, 6–24 h after exposure. Cyclin A and cyclin D1 expression were not increased by radiation in cells lacking K-RAS D13 expression or in H-RAS V12 cells. Radiation (1 Gy) modestly enhanced expression of p53, hMDM2 and p21 in parental cells 2-6h after exposure, which was abolished in cells lacking K-RAS D13 expression. Introduction of H-RAS V12 into cells lacking mutant active RAS partially restored radiation-induced expression of p21 and p53, and enhanced the induction of hMDM2 beyond that observed in parental cells. Collectively, our findings argue that the coordinated activation of multiple signaling pathways, in particular ERK1/2 and JNK1/2, by radiation is required to elevate the expression of G1 and S phase cyclin proteins and to promote S phase entry in human colon carcinoma cells expressing wild type p53. In HCT116 cells H-RAS V12 promotes hMDM2 expression after radiation exposure which correlates with reduced p53 expression and increased cell survival.  相似文献   

8.
Background: NOD-like receptor pyrin domain-3 (NLRP3) inflammasome activation is a double-edged sword in tumorigenesis. Whether NLRP3 is involved in the progression and prognosis of colorectal cancer (CRC) remains elucidated and is the focus of the present study.Methods: Immunohistochemistry (IHC) was applied on tissue microarray (TMA) to determine the expression of NLRP3 in CRC patients. All 100 patients were divided into the low NLRP3 group and the high NLRP3 group according to their NLRP3 IHC scoring. Additionally, CRC xenografts were established by injecting HCT116 or RKO cells subcutaneously into nude mice. Cell proliferation and apoptosis were determined in HCT116 cells after treatment with NLRP3 inhibitor MCC950.Results: NLRP3 expression was up-regulated in colon adenocarcinoma tissues compared with that in paracancerous tissues in CRC patients, HCT116 xenograft, and RKO xenograft. High NLRP3 level correlated with the advanced TNM classification of malignant tumors, the occurrence of distant metastasis, vascular invasion, and positive lymph nodes. Furthermore, Kaplan–Meier survival analysis revealed that a high NLRP3 level was associated with a low 5-year survival rate and even a low 10-year survival rate. Moreover, the multivariable Cox proportional hazards regression model implied that NLRP3 expression level was an independent risk factor for CRC prognosis. Inhibition of NLRP3 by MCC950 suppressed cell proliferation, induced cell apoptosis, and decreased mRNA levels of interleukin 1β (IL1β) and interleukin 18 (IL18) in HCT116 cells.Conclusions: High level of NLRP3 predicts poor survival in CRC patients. NLRP3 is a putative prognostic biomarker and a potential therapeutic target in CRC treatments.  相似文献   

9.
10.
The induction of apoptosis in cells of human colon cancer cell lines after gamma irradiation was investigated to determine whether apoptosis was mediated by TP53 and the subsequent expression of its downstream target, the NSAID-activated gene (NAG1). HCT116 (TP53(+/+)), HCT15 (TP53 mutant) and TP53 null HCT116 (TP53(-/-)) cells were irradiated with gamma rays, and apoptosis was measured at various times after irradiation. In HCT116 TP53(+/+) cells, apoptosis was increased after irradiation; the increase was dependent on the time after treatment and the dose of gamma rays. However, in HCT15 TP53 mutant cells and HCT116 TP53(-/-) cells, there were no remarkable changes in apoptosis. The expression of TP53 protein in HCT116 cells was increased after irradiation and was followed by an increase in the expression of NAG1 protein. In contrast, the expression of NAG1 protein in TP53 mutant cells and TP53(-/-) cells was not increased by the radiation treatment, suggesting that NAG1 was required for apoptosis. The expression of NAG1 increased apoptosis in HCT116 cells, but radiation treatment did not further increase apoptosis. The transfection of a NAG1 siRNA into HCT116 cells suppressed radiation-induced apoptosis and inhibited the induction of NAG1 protein without altering the expression of TP53. a NAG1 luciferase promoter construct that included both of the TP53 binding sites, was activated by radiation in dose-dependent manner, while the promoters lacking one or both of the TP53 binding sites in the NAG1 promoter activity either was less responsive or did not respond. The findings reported here indicate that gamma radiation activates the TP53 tumor suppressor, which then increases the expression of NAG1. NAG1 mediates the induction of apoptosis in human colorectal cells.  相似文献   

11.
Biomarkers and novel therapeutic targets are urgently needed in colorectal cancer (CRC). The pseudo tyrosine kinase receptor 7 (PTK7) is involved in planar cell polarity and it is deregulated in various malignancies, including CRC. Yet, little is known about its protein expression in human CRC, or about a possible correlation of its expression with clinical endpoints. Using a clinically annotated Tissue MicroArray (TMA) produced from from 192 consecutive CRC patients treated by initial surgery, we examined PTK7 expression by immunohistochemistry in tumoral tissue and matched normal mucosae, and correlated its expression with clinico-pathological features and patient outcome. PTK7 depletion by specific shRNA in HCT116 and HCT15 CRC cell lines was found to affect cell proliferation, resistance to drugs and cell migration. Tumor growth and metastatic phenotype were investigated in vivo using a xenograft mouse model of CRC cells with modulated expression of PTK7 levels. PTK7 was significantly up-regulated in CRC tissue as compared to matched healthy mucosae, and significant overexpression was found in 34% of patients. PTK7 overexpression was significantly associated with a reduced metastasis-free survival in non-metastatic patients. In HCT116 and HCT15 cells, shRNA PTK7 reduced migration but did not affect cell proliferation and resistance to drugs. In a xenograft mouse of HCT15 cells, downregulation of PTK7 led to reduced tumor growth, whereas its overexpression in PTK7-negative cancer cells led to increased metastatic events. PTK7 expression thus represents a potential prognostic biomarker and a novel therapeutic target in CRC.  相似文献   

12.
Chemoresistance is the main cause of treatment failure in advanced colorectal cancer (CRC). However, molecular mechanisms underlying this phenomenon remain to be elucidated. In a previous work we identified low levels of PKM2 as a putative oxaliplatin-resistance marker in HT29 CRC cell lines and also in patients. In order to assess how PKM2 influences oxaliplatin response in CRC cells, we silenced PKM2 using specific siRNAs in HT29, SW480 and HCT116 cells. MTT test demonstrated that PKM2 silencing induced resistance in HT29 and SW480 cells and sensitivity in HCT116 cells. Same experiments in isogenic HCT116 p53 null cells and double silencing of p53 and PKM2 in HT29 cells failed to show an influence of p53. By using trypan blue stain and FITC-Annexin V/PI tests we detected that PKM2 knockdown was associated with an increase in cell viability but not with a decrease in apoptosis activation in HT29 cells. Fluorescence microscopy revealed PKM2 nuclear translocation in response to oxaliplatin in HCT116 and HT29 cells but not in OXA-resistant HTOXAR3 cells. Finally, by using a qPCR Array we demonstrated that oxaliplatin and PKM2 silencing altered cell death gene expression patterns including those of BMF, which was significantly increased in HT29 cells in response to oxaliplatin, in a dose and time-dependent manner, but not in siPKM2-HT29 and HTOXAR3 cells. BMF gene silencing in HT29 cells lead to a decrease in oxaliplatin-induced cell death. In conclusion, our data report new non-glycolytic roles of PKM2 in response to genotoxic damage and proposes BMF as a possible target gene of PKM2 to be involved in oxaliplatin response and resistance in CRC cells.  相似文献   

13.
14.
15.
The aim of the study was to research the biological functions of circRNA (hsa_circ_0079662) and its underlying mechanism in colorectal cancer. Drug‐resistant cell lines (HT29‐LOHP, HCT116‐LOHP, HCT8‐LOHP) were separately dealt with oxaliplatin concentration gradient (0.1‐10 μmol/L). Real‐time PCR, Western blotting, dual‐luciferase assay, miRNA pull‐down assay, coimmunoprecipitation and ELASA were performed to explore the mechanism of chemotherapy drug oxaliplatin resistance in CRC. The results showed that the expression of hsa_circ_0079662 was increased in drug‐resistant cell lines by RT‐PCR. The expression of HOXA9, TRIP6, Vcam‐1, VEGFC, MMP3, MMP9 and MMP14 was higher by Western blotting. Interaction between HOXA9 and TRIP6 in CO‐IP detection. Additionally, the cytokines TNF‐α, IL‐1 and IL‐6 were also found. In conclusion, hsa_circ_0079662, as a ceRNA binding with hsa‐mir‐324‐5p, can regulate target gene HOXA9 and induced the mechanism of chemotherapy drug oxaliplatin resistance in CRC through the TNF‐α pathway in human colon cancer.  相似文献   

16.
Mouse colorectal cancer (CRC) models generated by orthotopic microinjection of human CRC cell lines reproduce the pattern of lymphatic, haematological and transcoelomic spread but generate low metastatic efficiency. Our aim was to develop a new strategy that could increase the metastatic efficiency of these models. We used subcutaneous implantation of the human CRC cell lines HCT116 or SW48 prior to their orthotopic microinjection in the cecum of nude mice (SC+ORT). This subcutaneous preconditioning significantly enhanced metastatic dissemination. In the HCT116 model it increased the number and size of metastatic foci in lymph nodes, lung, liver and peritoneum, whereas, in the SW48 model, it induced a shift from non-metastatic to metastatic. In both models the number of apoptotic bodies in the primary tumour in the SC+ORT group was significantly reduced compared with that in the direct orthotopic injection (ORT) group. Moreover, in HCT116 tumours the number of keratin-positive tumour buddings and single epithelial cells increased at the invasion front in SC+ORT mice. In the SW48 tumour model, we observed a trend towards a higher number of tumour buds and single cells in the SC+ORT group but this did not reach statistical significance. At a molecular level, the enhanced metastatic efficiency observed in the HCT116 SC+ORT model was associated with an increase in AKT activation, VEGF-A overexpression and downregulation of β1 integrin in primary tumour tissue, whereas, in SW48 SC+ORT mice, the level of expression of these proteins remained unchanged. In summary, subcutaneous preconditioning increased the metastatic dissemination of both orthotopic CRC models by increasing tumour cell survival and invasion at the tumour invasion front. This approach could be useful to simultaneously study the mechanisms of metastases and to evaluate anti-metastatic drugs against CRC.KEY WORDS: Collective invasion, Colorectal cancer model, Metastasis, Orthotopic injection, Single tumour cell, Subcutaneous preconditioning  相似文献   

17.
该文探讨了羽扇豆醇(Lupeol)对人结肠癌HCT116和SW620细胞增殖的影响及相关作用机制。使用不同浓度的Lupeol处理HCT116和SW620细胞后,用MTT法检测细胞活性,CCK8法检测细胞增殖能力,平板克隆实验检测细胞克隆形成能力,流式细胞术检测细胞周期和细胞凋亡,(quantitative real-time PCR,qPCR)和Western blot检测相应mRNA和蛋白表达水平,免疫荧光检测β-Catenin蛋白细胞内分布情况。通过构建shRNA敲低两种结肠癌细胞中RhoA,进一步研究Lupeol影响细胞增殖的分子机制。结果显示,Lupeol处理后,HCT116和SW620细胞增殖能力明显下降,克隆形成能力受到抑制,细胞周期阻滞于G0/G1期,细胞内RhoA、ROCK1、β-Catenin、Cyclin D1 mRNA和蛋白表达水平均显著下降,β-Catenin蛋白胞质和胞膜上分布减少。敲低RhoA后抑制了细胞增殖,同时使得RhoA-ROCK1-β-Catenin信号通路蛋白受到抑制,β-Catenin蛋白胞质和胞膜上分布减少。综上所述,Lupeol可通过抑制RhoA-ROCK1信号通路,抑制β-Catenin蛋白表达,进而抑制HCT116和SW620细胞增殖,Lupeol有望成为临床结肠癌治疗的新药物。  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号