共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
C. Qian R. G. Schoemaker W. H. van Gilst B. Yu A. J. M. Roks 《Netherlands heart journal》2008,16(9):305-309
It has been postulated that bone marrow derived endothelial progenitor cells (BM-EPCs) are essential for neovascularisation and endothelial repair and are involved in pharmacological treatment, and even its potential targets. There is no doubt that the ultimate success of angiogenic cell therapy will be determined by an appropriate stimulation of certain angiogenic progenitor cell subpopulations. Unfortunately, the biology of EPCs is still poorly understood. In particular, the understanding of endogenous microenvironments within the progenitor cell niches is critical, and will provide us with information about the signalling systems that supply a basis to develop rational pharmacotherapy to enhance the functional activity of endogenous or transplanted progenitor cells. The final success of clinical improvement of progenitor cell-mediated vascular repair and angiogenic therapy depends on a better understanding of EPC biology and a smart therapeutic design. In the first part of this review we first briefly discuss the possible involvement of progenitor cells in chronic heart failure. In part 2 we focus on factors that beneficially affect BMEPCs, with an emphasis on pharmacological molecular pathways involved in BM-EPC-induced neovascularisation. (Neth Heart J 2008;16:305-9.) 相似文献
3.
Mohammadreza Yousefi Mina Mamipour Sadiye E. Sokullu Shahrooz Ghaderi Hassan Amini Reza Rahbarghazi 《Journal of cellular physiology》2019,234(11):19451-19463
Cardiac progenitor cells (CPCs) have the potential to differentiate into several cell lineages with the ability to restore in cardiac tissue. Multipotency and self-renewal activity are the crucial characteristics of CPCs. Also, CPCs have promising therapeutic roles in cardiac diseases such as valvular disease, thrombosis, atherosclerosis, congestive heart failure, and cardiac remodeling. Toll-like receptors (TLRs), as the main part of the innate immunity, have a key role in the development and differentiation of immune cells. Some reports are found regarding the effect of TLRs in the maturation of stem cells. This article tried to find the potential role of TLRs in the dynamics of CPCs. By showing possible crosstalk between the TLR signaling pathways and CPCs dynamics, we could achieve a better conception related to TLRs in the regeneration of cardiac tissue. 相似文献
4.
C. Qian R. G. Schoemaker W. H. van Gilst B. Yu A. J. M. Roks 《Netherlands heart journal》2008,16(10):337-343
Regenerative medicine represents a promising perspective on therapeutic angiogenesis in patients with cardiovascular disease, including heart failure. However, previous or ongoing clinical trials show ambiguous outcomes with respect to the benefit of regenerative therapy by means of bone marrow stem cell infusion in myocardial infarction patients. Therefore, it is necessary to set up a rational therapeutic strategy in the treatment of congestive heart failure. Chemokines, cytokines and growth factors, as well as pharmaceutical agents, may have an impact on endothelial progenitor cell (EPC) physiology and thus can provide targets for pharmacological intervention. Indeed, EPCs and stem cell niches both in bone marrow and myocardial tissue can be treated as an integral target for recruitment of EPCs from the bone marrow to the cardiac ischaemic niche. In this article, we individually place the signalling factors in their specified context, and explain their roles in the various phases of neovascularisation (see Part 1). (Neth Heart J 2008;16:337-43.) 相似文献
5.
Donny Hanjaya‐Putra Jane Yee Doug Ceci Rachel Truitt Derek Yee Sharon Gerecht 《Journal of cellular and molecular medicine》2010,14(10):2436-2447
Endothelial progenitor cells (EPCs) in the circulatory system have been suggested to maintain vascular homeostasis and contribute to adult vascular regeneration and repair. These processes require that EPCs break down the extracellular matrix (ECM), migrate, differentiate and undergo tube morphogenesis. Evidently, the ECM plays a critical role by providing biochemical and biophysical cues that regulate cellular behaviour. Using a chemically and mechanically tunable hydrogel to study tube morphogenesis in vitro, we show that vascular endothelial growth factor (VEGF) and substrate mechanics co‐regulate tubulogenesis of EPCs. High levels of VEGF are required to initiate tube morphogenesis and activate matrix metalloproteinases (MMPs), which enable EPC migration. Under these conditions, the elasticity of the substrate affects the progression of tube morphogenesis. With decreases in substrate stiffness, we observe decreased MMP expression while increased cellular elongation, with intracellular vacuole extension and coalescence to open lumen compartments. RNAi studies demonstrate that membrane type 1‐MMP (MT1‐MMP) is required to enable the movement of EPCs on the matrix and that EPCs sense matrix stiffness through signalling cascades leading to the activation of the RhoGTPase Cdc42. Collectively, these results suggest that coupled responses for VEGF stimulation and modulation of substrate stiffness are required to regulate tube morphogenesis of EPCs. 相似文献
6.
WANG YaBin MA Sai WANG Qiang HU WenXing WANG DongJuan LI XiuJuan SU Tao QIN Xing ZHANG XiaoTian MA Ke CHEN JiangWei XIONG LiZe CAO Feng 《中国科学:生命科学英文版》2014,57(2):201-208
Cannabinoid receptor type 2(CB2)activation is recently reported to promote proliferation of some types of resident stem cells(e.g.,hematopoietic stem/progenitor cell or neural progenitor cell).Resident cardiac progenitor cell(CPC)activation and proliferation are crucial for endogenous cardiac regeneration and cardiac repair after myocardial infarction(MI).This study aims to explore the role and possible mechanisms of CB2receptor activation in enhancing myocardial repair.Our results revealed that CB2receptor agonist AM1241 can significantly increase CPCs by c-kit and Runx1 staining in ischemic myocardium as well as improve cardiomyocyte proliferation.AM1241 also decreased serum levels of MDA,TNF-αand IL-6 after MI.In addition,AM1241 can ameliorate left ventricular ejection fraction and fractional shortening,and reduce fibrosis.Moreover,AM1241 treatment markedly increased p-Akt and HO-1 expression,and promoted Nrf-2 nuclear translocation.However,PI3K inhibitor wortmannin eliminated these cardioprotective roles of AM1241.In conclusion,AM1241 could induce myocardial regeneration and improve cardiac function,which might be associated with PI3K/Akt/Nrf2 signaling pathway activation.Our findings may provide a promising strategy for cardiac endogenous regeneration after MI. 相似文献
7.
Identification and expansion of pancreatic stem/progenitor cells 总被引:4,自引:0,他引:4
Pancreatic islet transplantation represents an attractive approach for the treatment of diabetes. However, the limited availability of donor islets has largely hampered this approach. In this respect, the use of alternative sources of islets such as the ex vivo expansion and differentiation of functional endocrine cells for treating diabetes has become the major focus of diabetes research. Adult pancreatic stem cells /progenitor cells have yet to be recognized because limited markers exist for their identification. While the pancreas has the capacity to regenerate under certain circumstances, questions where adult pancreatic stem/progenitor cells are localized, how they are regulated, and even if the pancreas harbors a stem cell population need to be resolved. In this article, we review the recent achievements both in the identification as well as in the expansion of pancreatic stem/progenitor cells. 相似文献
8.
S. A. J. Chamuleau K. R. Vrijsen D. G. Rokosh X. L. Tang J. J. Piek R. Bolli 《Netherlands heart journal》2009,17(5):199-207
Myocardial infarction results in loss of cardiomyocytes, scar formation, ventricular remodelling, and eventually heart failure. In recent years, cell therapy has emerged as a potential new strategy for patients with ischaemic heart disease. This includes embryonic and bone marrow derived stem cells. Recent clinical studies showed ostensibly conflicting results of intracoronary infusion of autologous bone marrow derived stem cells in patients with acute or chronic myocardial infarction. Anyway, these results have stimulated additional clinical and pre-clinical studies to further enhance the beneficial effects of stem cell therapy. Recently, the existence of cardiac stem cells that reside in the heart itself was demonstrated. Their discovery has sparked intense hope for myocardial regeneration with cells that are obtained from the heart itself and are thereby inherently programmed to reconstitute cardiac tissue. These cells can be detected by several surface markers (e.g. c-kit, Sca-1, MDR1, Isl-1). Both in vitro and in vivo differentiation into cardiomyocytes, endothelial cells and vascular smooth muscle cells has been demonstrated, and animal studies showed promising results on improvement of left ventricular function. This review will discuss current views regarding the feasibility of cardiac repair, and focus on the potential role of the resident cardiac stem and progenitor cells. (Neth Heart J 2009;17:199–207.) 相似文献
9.
Philippe Menasché 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2015,370(1680)
Stem cell-based therapy is currently tested in several trials of chronic heart failure. The main question is to determine how its implementation could be extended to common clinical practice. To fill this gap, it is critical to first validate the hypothesis that the grafted stem cells primarily act by harnessing endogenous repair pathways. The confirmation of this mechanism would have three major clinically relevant consequences: (i) the use of cardiac-committed cells, since even though cells primarily act in a paracrine manner, such a phenotype seems the most functionally effective; (ii) the optimization of early cell retention, rather than of sustained cell survival, so that the cells reside in the target tissue long enough to deliver the factors underpinning their action; and (iii) the reliance on allogeneic cells, the expected rejection of which should only have to be delayed since a permanent engraftment would no longer be the objective. One step further, the long-term objective of cell therapy could be to use the cells exclusively for producing factors and then to only administer them to the patient. The production process would then be closer to that of a biological pharmaceutic, thereby facilitating an extended clinical use. 相似文献
10.
At present the prevalence of heart failure rises along with aging of the population. Current heart failure therapeutic options are directed towards disease prevention via neurohormonal antagonism (β-blockers, angiotensin converting enzyme inhibitors and/or angiotensin receptor blockers and aldosterone antagonists), symptomatic treatment with diuretics and digitalis and use of biventricular pacing and defibrillators in a special subset of patients. Despite these therapies and device interventions heart failure remains a progressive disease with high mortality and morbidity rates. The number of patients who survive to develop advanced heart failure is increasing. These patients require new therapeutic strategies. In this review two of emerging therapies in the treatment of heart failure are discussed: metabolic modulation and cellular therapy. Metabolic modulation aims to optimize the myocardial energy utilization via shifting the substrate utilization from free fatty acids to glucose. Cellular therapy on the other hand has the goal to achieve true cardiac regeneration. We review the experimental data that support these strategies as well as the available pharmacological agents for metabolic modulation and clinical application of cellular therapy. 相似文献
11.
12.
Optimization of surface‐immobilized extracellular matrices for the proliferation of neural progenitor cells derived from induced pluripotent stem cells 下载免费PDF全文
Takashi Komura Koichi Kato Shuhei Konagaya Tadashi Nakaji‐Hirabayashi Hiroo Iwata 《Biotechnology and bioengineering》2015,112(11):2388-2396
13.
Heart failure is becoming a global epidemic. It exerts a staggering toll on quality of life, and substantial medical and economic impact. In a pre-clinical model of cardiac hypertrophy and heart failure, we were able to overcome loss of heart function by administering the TRPV1 antagonist BCTC (4-(3-Chloro-2-pyridinyl)-N-[4-(1,1-dimethylethyl)phenyl]-1-piperazinecarboxamide). The results presented here identify TRPV1 antagonists as new treatment options for cardiac hypertrophy and heart failure. 相似文献
14.
Hui Che Guo‐Sheng Xiao Hai‐Ying Sun Yan Wang Gui‐Rong Li 《Journal of cellular and molecular medicine》2016,20(6):1118-1127
The cellular physiology and biology of human cardiac c‐kit+ progenitor cells has not been extensively characterized and remains an area of active research. This study investigates the functional expression of transient receptor potential vanilloid (TRPV) and possible roles for this ion channel in regulating proliferation and migration of human cardiac c‐kit+ progenitor cells. We found that genes coding for TRPV2 and TRPV4 channels and their proteins are significantly expressed in human c‐kit+ cardiac stem cells. Probenecid, an activator of TRPV2, induced an increase in intracellular Ca2+ (Ca2+i), an effect that may be attenuated or abolished by the TRPV2 blocker ruthenium red. The TRPV4 channel activator 4α‐phorbol 12‐13‐dicaprinate induced Ca2+i oscillations, which can be inhibited by the TRPV4 blocker RN‐1734. The alteration of Ca2+i by probenecid or 4α‐phorbol 12‐13‐dicprinate was dramatically inhibited in cells infected with TRPV2 short hairpin RNA (shRNA) or TRPV4 shRNA. Silencing TRPV2, but not TRPV4, significantly reduced cell proliferation by arresting cells at the G0/G1 boundary of the cell cycle. Cell migration was reduced by silencing TRPV2 or TRPV4. Western blot revealed that silencing TRPV2 decreased expression of cyclin D1, cyclin E, pERK1/2 and pAkt, whereas silencing TRPV4 only reduced pAkt expression. Our results demonstrate for the first time that functional TRPV2 and TRPV4 channels are abundantly expressed in human cardiac c‐kit+ progenitor cells. TRPV2 channels, but not TRPV4 channels, participate in regulating cell cycle progression; moreover, both TRPV2 and TRPV4 are involved in migration of human cardiac c‐kit+ progenitor cells. 相似文献
15.
Cixia Li Yuqiao Chang Yangyang Jia Zhikun Guo 《Journal of cellular biochemistry》2019,120(10):18533-18543
To explore the formation, morphological characteristics, cell composition, and differentiation potential of cardiomyocyte annulation (cardio-annulation) during in vitro culture of cardiac cells. Cardiac cells were isolated and cultured. A live-cell imaging system was used to observe cardio-annulation. Cardiac troponin-T (cTnT) and vimentin were labeled with double immunofluorescence staining, and coexpressions of cTnT and connexin43 (Cx43), cTnT and nanog, c-kit and nanog, and c-kit and stem cell antigen (sca-1) were detected. The location of various types of cells within the cardio-annulation structure was observed. Adipogenic- and osteogenic-inducing fluids were used separately for in situ induction to detect the multidirectional differentiation potential of cells during the annulation process. After 3 to 6 days, cardiac cells migrated and formed an open or closed annulus with a diameter of 800 to 3500 μm. The annulus wall comprised the medial, middle, and lateral regions. The cells in the medial region were small, abundant, and laminated, while those in the middle region were larger with fewer layers, and those in the lateral region were less abundant, and loosely arranged in a single layer. Cardiomyocytes were distributed mainly on the surface of the medial region; nanog+, c-kit+, and sca-1+ cells were located mainly at the bottom of the annulus wall and fibroblasts were located mainly between these layers. The annulus cavity contained a large number of small, round cells, and telocytes. Cx43 was expressed in all cell types, and nanog, c-kit, and sca-1 were coexpressed in the cardio-annulation cells, which possess adipogenic and osteogenic differentiation potential. Cardio-annulation was discovered during an in vitro culture of cardiac cells. The structure contains cardiomyocytes, fibroblasts, telocytes, and abundant stem cells. These results provide insight into the relationship among cardiac cells in vitro. 相似文献
16.
Jackson WM Lozito TP Djouad F Kuhn NZ Nesti LJ Tuan RS 《Journal of cellular and molecular medicine》2011,15(11):2377-2388
Mesenchymal stem cell (MSC) therapy is a promising approach to promote tissue regeneration by either differentiating the MSCs into the desired cell type or by using their trophic functions to promote endogenous tissue repair. These strategies of regenerative medicine are limited by the availability of MSCs at the point of clinical care. Our laboratory has recently identified multipotent mesenchymal progenitor cells (MPCs) in traumatically injured muscle tissue, and the objective of this study was to compare these cells to a typical population of bone marrow derived MSCs. Our hypothesis was that the MPCs exhibit multilineage differentiation and expression of trophic properties that make functionally them equivalent to bone marrow derived MSCs for tissue regeneration therapies. Quantitative evaluation of their proliferation, metabolic activity, expression of characteristic cell-surface markers and baseline gene expression profile demonstrate substantial similarity between the two cell types. The MPCs were capable of differentiation into osteoblasts, adipocytes and chondrocytes, but they appeared to demonstrate limited lineage commitment compared to the bone marrow derived MSCs. The MPCs also exhibited trophic (i.e. immunoregulatory and pro-angiogenic) properties that were comparable to those of MSCs. These results suggest that the traumatized muscle derived MPCs may not be a direct substitute for bone marrow derived MSCs. However, because of their availability and abundance, particularly following orthopaedic injuries when traumatized muscle is available to harvest autologous cells, MPCs are a promising cell source for regenerative medicine therapies designed to take advantage of their trophic properties. 相似文献
17.
18.
19.
Agocha Augustine E. Eghbali-Webb Mahboubeh 《Molecular and cellular biochemistry》1997,172(1-2):195-198
Cardiac fibroblasts constitute greater than 90% of non-myocyte cells in the heart. Because they are responsible for synthesis of components of the extracellular matrix, growth factors and cytokines in the myocardium, they play an important role in normal and pathologic performance of the heart. An understanding of their biology requires in depth studies in a stable and reliable system in which the biological responses of cardiac fibroblasts to various stimuli can be determined. With the exception of few, all studies have been performed on cardiac fibroblasts obtained from rodent hearts. We present a method for isolation and subsequent culture of viable cardiac fibroblasts from ventricular tissue of adult human. This method allows rapid and reliable isolation and subsequent culture of cardiac fibroblasts from adult heart tissue without the need for cumbersome isolation techniques and complex nutrient-enriched and hormone-supplemented culture media for maintenance. 相似文献
20.
目的:研究慢性心衰实验动物某些生化指标和心功能的变化,为慢性心衰的诊断提供依据。方法:使用阿霉素制备新西兰兔慢性心衰模型,将20只新西兰兔随机分为模型组(n=15)和对照组(n=5),分别耳缘静脉注射阿霉素(ADR)和生理盐水1 ml/kg,每周2次,共8周。随后进行心肌酶、颈动脉压、心电和心音信号的检测。结果:经统计学分析得知,两组的各项指标均有显著性差异(P<0.05)。结论:慢性心衰导致新西兰兔心肌受损,收缩功能和舒张功能下降,心脏储备指标有助于慢性心衰的诊断。 相似文献