首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both genetic and lifestyle factors contribute to the risk of non-alcoholic steatohepatitis (NASH). Additionally, epigenetic modifications may also play a key role in the pathogenesis of NASH. We therefore investigated liver DNA methylation, as a marker for epigenetic alterations, in individuals with simple steatosis and NASH, and further tested if these alterations were associated with clinical phenotypes. Liver biopsies obtained from 95 obese individuals (age: 49.5 ± 7.7 years, BMI: 43 ± 5.7 kg/m2, type 2 diabetes [T2D]: 35) as a wedge biopsy during a Roux-en-Y gastric bypass operation were investigated. Thirty-four individuals had a normal liver phenotype, 35 had simple steatosis, and 26 had NASH. Genome-wide DNA methylation pattern was analyzed using the Infinium HumanMethylation450 BeadChip. mRNA expression was analyzed from 42 individuals using the HumanHT-12 Expression BeadChip. We identified 1,292 CpG sites representing 677 unique genes differentially methylated in liver of individuals with NASH (q < 0.001), independently of T2D, age, sex, and BMI. Focusing on the top-ranking 30 and another 37 CpG sites mapped to genes enriched in pathways of metabolism (q = 0.0036) and cancer (q = 0.0001) all together, 59 NASH-associated CpG sites correlated with fasting insulin levels independently of age, fasting glucose, or T2D. From these, we identified 30 correlations between DNA methylation and mRNA expression, for example LDHB (r = ?0.45, P = 0.003). We demonstrated that NASH, more than simple steatosis, associates with differential DNA methylation in the human liver. These epigenetic alterations in NASH are linked with insulin metabolism.  相似文献   

2.
3.
Jagannathan L  Swaminathan K  Kumar SM  Kumar GR  Dey A 《Gene》2012,494(1):130-139
Alcohol induced liver injury has been studied extensively. Using literature search and bioinformatics tools, the present study characterizes the genes involved in alcohol induced liver injury. The cellular and metabolic processes in which genes involved in alcohol induced liver injury are implicated are also discussed. The genes related to alcohol induced liver injury are also involved in affecting certain molecular functions and metabolism of drugs, besides being associated with diseases. In conclusion, the changes in regulation of genes implicated in alcohol induced liver injury apart from causing alcohol mediated hepatic dysfunction may affect other vital processes in the body.  相似文献   

4.
In the current era of genomic medicine, diseases are identified as manifestations of anomalous patterns of gene expression. Cancer is the principal example among such maladies. Although remarkable progress has been achieved in the understanding of the molecular mechanisms involved in the genesis and progression of cancer, its epigenetic regulation, particularly histone deacetylation, demands further studies. Histone deacetylases (HDACs) are one of the key players in the gene expression regulation network in cancer because of their repressive role on tumor suppressor genes. Higher expression and function of deacetylases disrupt the finely tuned acetylation homeostasis in both histone and non-histone target proteins. This brings about alterations in the genes implicated in the regulation of cell proliferation, differentiation, apoptosis and other cellular processes. Moreover, the reversible nature of epigenetic modulation by HDACs makes them attractive targets for cancer remedy. This review summarizes the current knowledge of HDACs in tumorigenesis and tumor progression as well as their contribution to the hallmarks of cancer. The present report also describes briefly various assays to detect histone deacetylase activity and discusses the potential role of histone deacetylase inhibitors as emerging epigenetic drugs to cure cancer.  相似文献   

5.
Dysregulation of liver functions leads to insulin resistance causing type 2 diabetes mellitus and is often found in chronic liver diseases. However, the mechanisms of hepatic dysfunction leading to hepatic metabolic disorder are still poorly understood in chronic liver diseases. The current work investigated the role of hepatitis B virus X protein (HBx) in regulating glucose metabolism. We studied HBx-overexpressing (HBxTg) mice and HBxTg mice lacking inducible nitric oxide synthase (iNOS). Here we show that gene expressions of the key gluconeogenic enzymes were significantly increased in HepG2 cells expressing HBx (HepG2-HBx) and in non-tumor liver tissues of hepatitis B virus patients with high levels of HBx expression. In the liver of HBxTg mice, the expressions of gluconeogenic genes were also elevated, leading to hyperglycemia by increasing hepatic glucose production. However, this effect was insufficient to cause systemic insulin resistance. Importantly, the actions of HBx on hepatic glucose metabolism are thought to be mediated via iNOS signaling, as evidenced by the fact that deficiency of iNOS restored HBx-induced hyperglycemia by suppressing the gene expression of gluconeogenic enzymes. Treatment of HepG2-HBx cells with nitric oxide (NO) caused a significant increase in the expression of gluconeogenic genes, but JNK1 inhibition was completely normalized. Furthermore, hyperactivation of JNK1 in the liver of HBxTg mice was also suppressed in the absence of iNOS, indicating the critical role for JNK in the mutual regulation of HBx- and iNOS-mediated glucose metabolism. These findings establish a novel mechanism of HBx-driven hepatic metabolic disorder that is modulated by iNOS-mediated activation of JNK.  相似文献   

6.
Endothelial cells (EC) act as leading actors in angiogenesis. Understanding the complex network of signal transduction pathways which regulate angiogenesis might offer insights in the regulation of normal and pathological events, including tumours, vascular, inflammatory and immune diseases. The effects of olive oil and of Blueberry extracts upon the phosphoinositide (PI)-specific phospholipase C (PLC) enzymes were evaluated both in quiescent and inflammatory stimulated human umbilical vein EC (HUVEC) using molecular biology (multiliquid bioanalysis) and immunofluorescence techniques. Oleuropein significantly increased the number of surviving HUVEC compared to untreated controls, suggesting that it favours the survival and proliferation of EC. Our results suggest that Oleuropein might be useful to induce EC proliferation, an important event during angiogenesis, with special regard to wound healing. Blueberry extracts increased the number of surviving HUVEC, although the comparison to untreated controls did not result statistically significant. Lipopolysaccharide (LPS) administration significantly reduced the number of live HUVEC. LPS can also modify the expression of selected PLC genes. Adding Blueberry extracts to LPS treated HUVEC cultures did not significantly modify the variations of PLC expression induced by LPS. Oleuropein increased or reduced the expression of PLC genes, and statistically significant results were identified for selected PLC isoforms. Oleuropein also modified the effects of LPS upon PLC genes’ expression. Thus, our results corroborate the hypothesis that Oleuropein owns anti-inflammatory activity. The intracellular localization of PLC enzymes was modified by the different treatments we used. Podosome-like structures were observed in differently LPS treated HUVEC.  相似文献   

7.
Fanconi anaemia (FA) is an inherited disorder characterized by chromosomal instability. The phenotype is variable, which raises the possibility that it may be affected by other factors, such as epigenetic modifications. These play an important role in oncogenesis and may be pharmacologically manipulated. Our aim was to explore whether the epigenetic profiles in FA differ from non-FA individuals and whether these could be manipulated to alter the disease phenotype. We compared expression of epigenetic genes and DNA methylation profile of tumour suppressor genes between FA and normal samples. FA samples exhibited decreased expression levels of genes involved in epigenetic regulation and hypomethylation in the promoter regions of tumour suppressor genes. Treatment of FA cells with histone deacetylase inhibitor Vorinostat increased the expression of DNM3Tβ and reduced the levels of CIITA and HDAC9, PAK1, USP16, all involved in different aspects of epigenetic and immune regulation. Given the ability of Vorinostat to modulate epigenetic genes in FA patients, we investigated its functional effects on the FA phenotype. This was assessed by incubating FA cells with Vorinostat and quantifying chromosomal breaks induced by DNA cross-linking agents. Treatment of FA cells with Vorinostat resulted in a significant reduction of aberrant cells (81% on average). Our results suggest that epigenetic mechanisms may play a role in oncogenesis in FA. Epigenetic agents may be helpful in improving the phenotype of FA patients, potentially reducing tumour incidence in this population.  相似文献   

8.
缺氧应激对肝癌细胞代谢信号通路的调节作用   总被引:4,自引:0,他引:4  
通过实验阐明在缺氧条件下糖酵解相关基因表达的变化规律及对肿瘤细胞和正常细胞增殖的影响,并探索活性氧(ROS)介导肝癌细胞代谢途径及对相关基因表达和酶活性的调节作用.以SMMC-7721人肝癌细胞和L02正常肝细胞作为研究对象,分别在单纯缺氧及加葡萄糖缺氧条件下,观察细胞生长,并检测糖代谢关键酶:丙酮酸激酶(pyruvate-kinase,PK)、己糖激酶(hexokinase,HK)、琥珀酸脱氢酶(succinic dehydrogenase,SDH)、异柠檬酸脱氢酶(isocitric dehydrogenase,IDH)mRNA表达水平和乳酸脱氢酶(lactate dehydrogenase,LDH)活性.还检测了pkb基因及缺氧诱导因子hif-1的表达.实验结果说明:a.肿瘤细胞较正常细胞具有更强的缺氧耐受性;b.缺氧条件下,糖酵解途径的增强是保证肿瘤细胞能快速增殖的机制之一;c.ROS通过HIF-1介导了糖代谢通路相关酶的基因表达,参与肝癌细胞缺氧信号通路调节,用抗氧化剂干预可以降低肿瘤细胞的缺氧耐受能力.  相似文献   

9.
Acyl-CoA thioesterases hydrolyze acyl-CoAs to the corresponding free fatty acid plus coenzyme A. The activity is strongly induced in rat and mouse liver after feeding the animals peroxisome proliferators (PPs). To elucidate the role of these enzymes in lipid metabolism, the authors have cloned the cDNAs corresponding to the inducible cytosolic and mitochondrial type I enzymes (CTE-I and MTE-I), and studied tissue expression and nutritional regulation of expression of the mRNAs in mice. The constitutive expression of both mRNAs was low in liver, with CTE-I expressed mainly in kidney and brown adipose tissue, and MTE-I expressed in brown adipose tissue and heart. As expected, the expression in liver of both the CTE-I and MTE-I mRNAs were strongly induced (>50-fold) by treatment with clofibrate. A similar level of induction was observed by fasting and a time-course study showed that the CTE-I and MTE-I mRNAs were increased already at 6 h after removal of the diet. Refeeding normal chow diet to mice fasted for 24h normalized the mRNA levels with a T 1/2 of about 3–4 h. Feeding mice a fat-free diet further decreased the expression, possibly indicating repression of expression. The strong expression of MTE-I and CTE-I in the heart was increased about 10-fold by fasting. To further characterize these highly regulated enzymes, the authors have cloned the corresponding genes and promoter regions. The structures of the two genes were found to be very similar, consisting of three exons and two introns. Exon-intron borders conform to general consensus sequences, and, especially, the first exon appears to be highly conserved. The promoter regions of both the CTE-I and MTE-I genes contain putative PP response elements, suggesting an involvement of PP-activated receptors in the regulation of these genes.  相似文献   

10.
Macrophages’ phenotypic and functional diversity depends on differentiating programs related to local environmental factors. Recent interest was deserved to the signal transduction pathways acting in macrophage polarization, including the phosphoinositide (PI) system and related phospholipase C (PLC) family of enzymes. The expression panel of PLCs and the subcellular localization differs in quiescent cells compared to the pathological counterpart. We analyzed the expression of PLC enzymes in unpolarized (M0), as well as in M1 and M2 macrophages to list the expressed isoforms and their subcellular localization. Furthermore, we investigated whether inflammatory stimulation modified the basal panel of PLCs’ expression and subcellular localization. All PLC enzymes were detected within both M1 and M2 cells, but not in M0 cells. M0, as well as M1 and M2 cells own a specific panel of expression, different for both genes’ mRNA expression and intracellular localization of PLC enzymes. The panel of PLC genes’ expression and PLC proteins’ presence slightly changes after inflammatory stimulation. PLC enzymes might play a complex role in macrophages during inflammation and probably also during polarization.  相似文献   

11.
12.
13.
Signaling via growth factor receptors frequently results in the concomitant activation of phospholipase C gamma (PLC gamma) and phosphatidylinositol (PI) 3-kinase. While it is well established that tyrosine phosphorylation of PLC gamma is necessary for its activation, we show here that PLC gamma is regulated additionally by the lipid products of PI 3-kinase. We demonstrate that the pleckstrin homology (PH) domain of PLC gamma binds to phosphatidylinositol 3,4,5-trisphosphate [PdtIns(3,4,5)P3], and is targeted to the membrane in response to growth factor stimulation, while a mutated version of this PH domain that does not bind PdtIns(3,4,5)P3 is not membrane targeted. Consistent with these observations, activation of PI 3-kinase causes PLC gamma PH domain-mediated membrane targeting and PLC gamma activation. By contrast, either the inhibition of PI 3-kinase by overexpression of a dominant-negative mutant or the prevention of PLC gamma membrane targeting by overexpression of the PLC gamma PH domain prevents growth factor-induced PLC gamma activation. These experiments reveal a novel mechanism for cross-talk and mutual regulation of activity between two enzymes that participate in the control of phosphoinositide metabolism.  相似文献   

14.
Mitochondrial abnormalities are associated with cancer development, yet how oncogenic signals affect mitochondrial functions has not been fully understood. In this study, we investigate the relationship between mitochondrial alterations and PI3K/protein kinase B (AKT) signaling activation using hepatocytes and liver tissues as our experimental models. We show here that liver-specific deletion of Pten, which leads to activation of PI3K/AKT, is associated with elevated oxidative stress, increased mitochondrial mass, and augmented respiration accompanied by enhanced glycolysis. Consistent with these observations, estrogen-related receptor α (ERRα), an orphan nuclear receptor known for its role in mitochondrial biogenesis, is up-regulated in the absence of phosphatase and tensin homolog deleted on chromosome 10 (PTEN). Our pharmacological and genetic studies show that PI3K/AKT activity regulates the expression of ERRα and mitochondrial biogenesis/respiration. Furthermore, cAMP-response element-binding protein, as a downstream target of AKT, plays a role in the regulation of ERRα, independent of PKA signaling. ERRα regulates reactive oxygen species production, and ERRα knockdown attenuates proliferation and colony-forming potential in Pten-null hepatocytes. Finally, analysis of clinical datasets from liver tissues showed a negative correlation between expressions of ERRα and PTEN in patients with liver cancer. Therefore, this study has established a previously unrecognized link between a growth signal and mitochondrial metabolism.  相似文献   

15.
Cancer is characterized by aberrant patterns of expression of multiple genes. These major shifts in gene expression are believed to be due to not only genetic but also epigenetic changes. The epigenetic changes are communicated through chemical modifications, including histone modifications. However, it is unclear whether the binding of histone-modifying proteins to genomic regions and the placing of histone modifications efficiently discriminates corresponding genes from the rest of the genes in the human genome. We performed gene expression analysis of histone demethylases (HDMs) and histone methyltransferases (HMTs), their target genes and genes with relevant histone modifications in normal and tumor tissues. Surprisingly, this analysis revealed the existence of correlations in the expression levels of different HDMs and HMTs. The observed HDM/HMT gene expression signature was specific to particular normal and cancer cell types and highly correlated with target gene expression and the expression of genes with histone modifications. Notably, we observed that trimethylation at lysine 4 and lysine 27 separated preferentially expressed and underexpressed genes, which was strikingly different in cancer cells compared to normal cells. We conclude that changes in coordinated regulation of enzymes executing histone modifications may underlie global epigenetic changes occurring in cancer.  相似文献   

16.
17.
18.
Signal transduction pathways, involved in cell cycle and activities, depend on various components including lipid signalling molecules, such as phosphoinositides and related enzymes. Many evidences support the hypothesis that inositol lipid cycle is involved in astrocytes activation during neurodegeneration. Previous studies investigated the pattern of expression of phosphoinositide‐specific phospholipase C (PI‐PLC) family isoforms in astrocytes, individuating in cultured neonatal rat astrocytes, supposed to be quiescent cells, the absence of some isoforms, accordingly to their well known tissue specificity. The same study was conducted in cultured rat astrocytoma C6 cells and designed a different pattern of expression of PI‐PLCs in the neoplastic counterpart, accordingly to literature suggesting a PI signalling involvement in tumour progression. It is not clear the role of PI‐PLC isoforms in inflammation; recent data demonstrate they are involved in cytokines production, with special regard to IL‐6. PI‐PLCs expression in LPS treated neonatal rat astrocytes performed by using RT‐PCR, observed at 3, 6, 18 and 24 h intervals, expressed: PI‐PLC beta1, beta4 and gamma1 in all intervals analysed; PI‐PLC delta1 at 6, 18 and 24 h; PI‐PLC delta3 at 6 h after treatment. PI‐PLC beta3, delta4 and epsilon, present in untreated astrocytes, were not detected after LPS treatment. Immunocytochemical analysis, performed to visualize the sub‐cellular distribution of the expressed isoforms, demonstrated different patterns of localisation at different times of exposure. These observations suggest that PI‐PLCs expression and distribution may play a role in ongoing inflammation process of CNS. J. Cell. Biochem. 109: 1006–1012, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
20.

Background

Interindividual differences in liver functions such as protein synthesis, lipid and carbohydrate metabolism and drug metabolism are influenced by epigenetic factors. The role of the epigenetic machinery in such processes has, however, been barely investigated. 5-hydroxymethylcytosine (5hmC) is a recently re-discovered epigenetic DNA modification that plays an important role in the control of gene expression.

Results

In this study, we investigate 5hmC occurrence and genomic distribution in 8 fetal and 7 adult human liver samples in relation to ontogeny and function. LC-MS analysis shows that in the adult liver samples 5hmC comprises up to 1% of the total cytosine content, whereas in all fetal livers it is below 0.125%. Immunohistostaining of liver sections with a polyclonal anti-5hmC antibody shows that 5hmC is detected in most of the hepatocytes. Genome-wide mapping of the distribution of 5hmC in human liver samples by next-generation sequencing shows significant differences between fetal and adult livers. In adult livers, 5hmC occupancy is overrepresented in genes involved in active catabolic and metabolic processes, whereas 5hmC elements which are found in genes exclusively in fetal livers and disappear in the adult state, are more specific to pathways for differentiation and development.

Conclusions

Our findings suggest that 5-hydroxymethylcytosine plays an important role in the development and function of the human liver and might be an important determinant for development of liver diseases as well as of the interindividual differences in drug metabolism and toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号