首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Small molecules as useful chemical tools can affect cell differentiation and even change cell fate. It is demonstrated that LY294002, a small molecule inhibitor of phosphatidylinositol 3-kinase (PI3K)/Akt signal pathway, can inhibit proliferation and promote neuronal differentiation of mesenchymal stem cells (MSCs). The purpose of this study was to investigate the differentiation effect of Ly294002 small molecule on the human endometrial stem cells (hEnSCs) into motor neuron-like cells on polycaprolactone (PCL)/collagen scaffolds. hEnSCs were cultured in a neurogenic inductive medium containing 1 μM LY294002 on the surface of PCL/collagen electrospun fibrous scaffolds. Cell attachment and viability of cells on scaffolds were characterized by scanning electron microscope (SEM) and 3-(4,5-dimethylthiazoyl-2-yl)2,5-diphenyltetrazolium bromide (MTT) assay. The expression of neuron-specific markers was assayed by real-time PCR and immunocytochemistry analysis after 15 days post induction. Results showed that attachment and differentiation of hEnSCs into motor neuron-like cells on the scaffolds with Ly294002 small molecule were higher than that of the cells on tissue culture plates as control group. In conclusion, PCL/collagen electrospun scaffolds with Ly294002 have potential for being used in neural tissue engineering because of its bioactive and three-dimensional structure which enhances viability and differentiation of hEnSCs into neurons through inhibition of the PI3K/Akt pathway. Thus, manipulation of this pathway by small molecules can enhance neural differentiation.  相似文献   

2.
Transplantation of stem cells using biodegradable and biocompatible nanofibrous scaffolds is a promising therapeutic approach for treating inherited retinal degenerative diseases such as retinitis pigmentosa and age-related macular degeneration. In this study, conjunctiva mesenchymal stem cells (CJMSCs) were seeded onto poly-l-lactic acid (PLLA) nanofibrous scaffolds and were induced to differentiate toward photoreceptor cell lineages. Furthermore, the effects of orientation of scaffold on photoreceptor differentiation were examined. Scanning electron microscopy (SEM) imaging, quantitative real time RT-PCR (qPCR) and immunocytochemistry were used to analyze differentiated cells and their expression of photoreceptor-specific genes. Our observations demonstrated the differentiation of CJMSCs to photoreceptor cells on nanofibrous scaffolds and suggested their potential application in retinal regeneration. SEM imaging showed that CJMSCs were spindle shaped and well oriented on the aligned nanofiber scaffolds. The expression of rod photoreceptor-specific genes was significantly higher in CJMSCs differentiated on randomly-oriented nanofibers compared to those on aligned nanofibers. According to our results we may conclude that the nanofibrous PLLA scaffold reported herein could be used as a potential cell carrier for retinal tissue engineering and a combination of electrospun nanofiber scaffolds and MSC-derived conjunctiva stromal cells may have potential application in retinal regenerative therapy.  相似文献   

3.
Neurite outgrowth from endogenous or transplanted cells is important for neural regeneration following nerve tissue injury. Modified substrates often provide better environments for cell adhesion and neurite outgrowth. This study was conducted to determine if MWCNT (multiwalled carbon nanotube)-coated electrospun PLCL [poly (l-lactic acid-co-3-caprolactone)] nanofibres improved the neurite outgrowth of PC-12 cells. To accomplish this, two groups, PC-12 cells in either uncoated PLCL scaffolds or MWCNT-coated PLCL scaffolds were cultured for 9 days. MWCNT-coated PLCL scaffolds showed improved adhesion, proliferation and neurite outgrowth of PC-12 cells. These findings suggest that MWCNT-coated nanofibrous scaffolds may be an attractive platform for cell transplantation application in neural tissue engineering.  相似文献   

4.
Electrospun nanocomposite scaffolds were fabricated by encapsulating multi-walled carbon nanotubes (MWNT) in poly (lactic acid) (PLA) nanofibers. Scanning electron microscopy (SEM) confirmed the fabrication of nanofibers, and transmission electron microscopy identified the alignment and dispersion of MWNT along the axis of the fibers. Tensile testing showed an increase in the tensile modulus for a MWNT loading of 0.25 wt% compared with electrospun nanofibrous mats without MWNT reinforcement. Conductivity measurements indicated that the confined geometry of the fibrous system requires only minute doping to obtain significant enhancements at 0.32 wt%. Adipose-derived human mesenchymal stem cells (hMSCs) were seeded on electrospun scaffolds containing 1 wt% MWNT and 0 wt% MWNT, to determine the efficacy of the scaffolds for cell growth, and the effect of MWNT on hMSC viability and proliferation over two weeks in culture. Staining for live and dead cells and DNA quantification indicated that the hMSCs were alive and proliferating through day 14. SEM images of hMSCs at 14 days showed morphological differences, with hMSCs on PLA well spread and hMSCs on PLA with 1% MWNT closely packed and longitudinally aligned.  相似文献   

5.
The emerging fields of tissue engineering and biomaterials have begun to provide potential treatment options for liver failure. The goal of the present study is to investigate the ability of a poly L-lactic acid (PLLA) nanofiber scaffold to support and enhance hepatic differentiation of human bone marrow-derived mesenchymal stem cells (hMSCs). A scaffold composed of poly L-lactic acid and collagen was fabricated by the electrospinning technique. After characterizing isolated hMSCs, they were seeded onto PLLA nanofiber scaffolds and induced to differentiate into a hepatocyte lineage. The mRNA levels and protein expression of several important hepatic genes were determined using RT-PCR, immunocytochemistry and ELISA. Flow cytometry revealed that the isolated bone marrow-derived stem cells were positive for hMSC-specific markers CD73, CD44, CD105 and CD166 and negative for hematopoietic markers CD34 and CD45. The differentiation of these stem cells into adipocytes and osteoblasts demonstrated their multipotency. Scanning electron microscopy showed adherence of cells in the nanofiber scaffold during differentiation towards hepatocytes. Our results showed that expression levels of liver-specific markers such as albumin, α-fetoprotein, and cytokeratins 8 and 18 were higher in differentiated cells on the nanofibers than when cultured on plates. Importantly, liver functioning serum proteins, albumin and α-1 antitrypsin were secreted into the culture medium at higher levels by the differentiated cells on the nanofibers than on the plates, demonstrating that our nanofibrous scaffolds promoted and enhanced hepatic differentiation under our culture conditions. Our results show that the engineered PLLA nanofibrous scaffold is a conducive matrix for the differentiation of MSCs into functional hepatocyte-like cells. This represents the first step for the use of this nanofibrous scaffold for culture and differentiation of stem cells that may be employed for tissue engineering and cell-based therapy applications.  相似文献   

6.
Electrospun composite scaffolds show high ability to be used in regenerative medicine and drug delivery, due to the nanofibrous structure and high surface area to volume ratio. In this study, we used nanofibrous scaffolds fabricated by chitosan (CS), poly(vinyl alcohol) (PVA), carbopol, and polycaprolactone using a dual electrospinning technique while curcumin (Cur) incorporated inside of the CS/PVA fibers. Scaffolds were fully characterized via scanning electron microscopy, water contact angle, tensile measurement, hydration, protein adsorption, and wrinkled tests. Furthermore, viability of the buccal fat pad-derived mesenchymal stem cells (BFP-MSCs) was also investigated using MTT assay for up to 14 days while cultured on these scaffolds. Cell cycle assay was also performed to more detailed evaluation of the stem cells growth when grown on scaffolds (with and without Cur) compared with the culture plate. Results demonstrated that Cur loaded nanofibrous scaffold had more suitable capability for water absorption and mechanical properties compared with the scaffold without Cur and it could also support the stem cells viability and proliferation. Cur release profile showed a decreasing effect on BFP-MSCs viability in the initial stage, but it showed a positive effect on stem cell viability in a long-term manner. In general, the results indicated that this nanofibrous scaffold has great potential as a delivery of the Cur and BFP-MSCs simultaneously, and so holds the promising potential for use in various regenerative medicine applications.  相似文献   

7.
Mesenchymal stem cells and precursor cells are ideal candidates for tendon and ligament tissue engineering; however, for the stem cell-based approach to succeed, these cells would be required to proliferate and differentiate into tendon/ligament fibroblasts on the tissue engineering scaffold. Among the various fiber-based scaffolds that have been used in tendon/ligament tissue engineering, hybrid fibrous scaffolds comprising both microfibers and nanofibers have been recently shown to be particularly promising. With the nanofibrous coating presenting a biomimetic surface, the scaffolds can also potentially mimic the natural extracellular matrix in function by acting as a depot for sustained release of growth factors. In this study, we demonstrate that basic fibroblast growth factor (bFGF) could be successfully incorporated, randomly dispersed within blend-electrospun nanofibers and released in a bioactive form over 1 week. The released bioactive bFGF activated tyrosine phosphorylation signaling within seeded BMSCs. The bFGF-releasing nanofibrous scaffolds facilitated BMSC proliferation, upregulated gene expression of tendon/ligament-specific ECM proteins, increased production and deposition of collagen and tenascin-C, reduced multipotency of the BMSCs and induced tendon/ligament-like fibroblastic differentiation, indicating their potential in tendon/ligament tissue engineering applications.  相似文献   

8.
Transglutaminase 2 (TG2) was used to attach biologically-active BMP2 to collagen type I-coated poly-l-lactic acid (PLLA) nanofibrous scaffolds. Irreversibly cross-linked BMP2 retained its activity and induced Smad-dependent gene expression in cells seeded on PLLA–BMP2 scaffolds. These modified scaffolds promote osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs) cultured in low-serum and growth factor free medium and support deposition of the calcified matrix and induction of the molecular osteogenic markers Runx2, osteopontin, osteonectin and bone sialoprotein. Importantly, the PLLA–BMP2 scaffolds did not support chondrogenic differentiation in hBMSCs as there was no expression of chondrogenic markers aggrecan, Sox 9, and collagen type II, and no deposition of cartilaginous glycosaminoglycan-rich matrix. Thus, TG2-mediated cross-linking of BMP2 to a scaffold is a novel approach to induce osteoblast-specific programming of hBMSCs in a spatially controlled manner.  相似文献   

9.
Blood transfusion or blood products, such as plasma, have a long history in improving health, but today, platelet-rich plasma (PRP) is used in various medical areas such as surgery, orthopedics, and rheumatology in many ways. Considering the high efficiency of tissue engineering in repairing bone defects, in this study, we investigated the combined effect of nanofibrous scaffolds in combination with PRP on the osteogenic differentiation potential of human induced pluripotent stem cells (iPSCs). Electrospinning was used for fabricating nanofibrous scaffolds by polyvinylidene fluoride/collagen (PVDF/col) with and without PRP. After scaffold characterization, the osteoinductivity of the fabricated scaffolds was studied by culturing human iPSCs under osteogenic medium. The results showed that PRP has a considerable positive effect on the biocompatibility of the PVDF/col nanofibrous scaffold when examined by protein adsorption, cell attachment, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. In addition, the results obtained from alkaline phosphatase activity and calcium content assays demonstrated that nanofibers have higher osteoinductivity while grown on PRP-incorporated PVDF/col nanofibers. These results were also confirmed while the osteogenic differentiation of the iPSCs was more investigated by evaluating the most important bone-related genes expression level. According to the results, it can be concluded that PVDF/col/PRP has much more osteoinductivity while compared with the PVDF/col, and it can be introduced as a promising bone bio-implant for use in bone tissue engineering applications.  相似文献   

10.
A novel fibrous membrane of carboxymethyl chitin (CMC)/poly(vinyl alcohol) (PVA) blend was successfully prepared by electrospinning technique. The concentration of CMC (7%) with PVA (8%) was optimized, blended in different ratios (0–100%) and electrospun to get nanofibers. Fibers were made water insoluble by chemical followed by thermal cross-linking. In vitro mineralization studies identified the ability of formation of hydroxyapatite deposits on the nanofibrous surfaces. Cytotoxicity of the nanofibrous scaffold was evaluated using human mesenchymal stem cells (hMSCs) by the MTT assays. The cell viability was not altered when these nanofibrous scaffolds were pre-washed with phosphate buffer containing saline (PBS) before seeding the cells. The SEM images also revealed that cells were able to attach and spread in the nanofibrous scaffolds. Thus our results indicate that the nanofibrous CMC/PVA scaffold supports cell adhesion/attachment and proliferation and hence this scaffold will be a promising candidate for tissue engineering applications.  相似文献   

11.
Cocell polymers can be the best implants for replacing bone defects in patients. The pluripotent stem cells produced from the patient and the nanofibrous polymeric scaffold that can be completely degraded in the body and its produced monomers could be also usable are the best options for this implant. In this study, electrospun poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanofibers were fabricated and characterized and then osteogenic differentiation of the human-induced pluripotent stem cells (iPSCs) was investigated while cultured on PHBV scaffold. MTT results showed that cultured iPSCs on PHBV proliferation were increased compared to those cultured on tissue culture polystyrene (TCPS) as the control. Alkaline phosphatase (ALP) activity and calcium content were also significantly increased in iPSCs cultured on PHBV compared to the cultured on TCPS under osteogenic medium. Gene expression evaluation demonstrated that Runx2, collagen type I, ALP, osteonectin, and osteocalcin were upregulated in iPSCs cultured on PHBV scaffold in comparison with those cultured on TCPS for 2 weeks. Western blot analysis have shown that osteocalcin and osteopontin expression as two major osteogenic markers were increased in iPSCs cultured on PHBV scaffold. According to the results, nanofiber-based PHBV has a promising potential to increase osteogenic differentiation of the stem cells and iPSCs-PHBV as a cell-co-polymer construct demonstrated that has a great efficiency for use as a bone tissue engineered bioimplant.  相似文献   

12.
13.
Functional PLA scaffolds are created with single component, core-sheath, or porous fiber morphology and doped with TCP nanoparticles to study the release profiles for use in bone tissue engineering applications. Pharmacokinetic analyses are performed for the three different nanofibrous structures after doping with TCP. Results indicate that single component and porous fiber scaffolds exhibit an initial-burst release profile whereas core-sheath fibers show a steady release. All scaffolds are then seeded with human adipose-derived stem cells (hASC), which remain viable and continue proliferation on all nanofibrous morphologies for up to 21 d. Osteogenic differentiation of hASC and cell-mediated calcium accretion are largest on porous fibers.  相似文献   

14.
干细胞联合生物支架材料体外构建功能性组织与器官,成为当前组织再生研究的重要策略,而探求具有良好生物相容性的支架材料是其关键.本研究采用扫描电镜、噻唑蓝(MTT)法、荧光显微染色等方法检测小鼠诱导多能干细胞(murine induced pluripotent stem cells, miPSCs)在聚己内酯(poly ε-caprolactone, PCL)静电纺丝纳米纤维支架上的粘附、增殖等生物学特性,探究聚己内酯纳米纤维支架与miPSCs的生物相容性. 结果显示,miPSC在PCL纳米纤维支架上具有良好粘附性并呈集落样生长,其增殖能力及干性标记物(Oct4-GFP+)的表达均不亚于标准对照组;扫描电镜显示,miPSC在PCL纳米纤维支架材料上呈现出绒毛状突起的表面结构.上述结果表明,PCL纳米纤维支架可促进miPSCs的粘附、自我增殖以及干性维持,两者具有良好的生物相容性,为下一步联合生物支架材料与干细胞构建功能性组织奠定了基础.  相似文献   

15.

The field of tissue engineering exploits living cells in a variety of ways to restore, maintain, or enhance tissues and organs. Between stem cells, human induced pluripotent stem cells (hiPSCs), are very important due to their wide abilities. Growth factors can support proliferation, differentiation, and migration of hiPSCs. Platelet-rich plasma (PRP) could be used as the source of growth factors for hiPSCs. In the present study, proliferation and neural differentiation of hiPSCs on surface-modified nanofibrous Poly-l-lactic acid (PLLA) coated with platelet-rich plasma was investigated. The results of in vitro analysis showed that on the surface, which was modified nanofibrous scaffolds coated with platelet-rich plasma, significantly enhanced hiPSCs proliferation and neural differentiation were observed. Whereas the MTT ([3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide]) results showed biocompatibility of surface-modified nanofibrous scaffolds coated with platelet-rich plasma and the usage of these modified nanoscaffolds in neural tissue engineering in vivo is promising for the future.

  相似文献   

16.
The essence of tissue engineering is the fabrication of autologous cells or induced stem cells in naturally derived or synthetic scaffolds to form specific tissues. Polymer is thought as an appealing source of cell-seeded scaffold owing to the diversity of its physicochemical property and can be electrospun into nano-size to mimic natural structure. Poly (L-lactic acid) (PLLA) and poly (ε-caprolactone) (PCL) are both excellent aliphatic polyester with almost “opposite” characteristics. The controlling combination of PLLA and PCL provides varying properties and makes diverse applications. Compared with the copolymers of the same components, PLLA/PCL blend demonstrates its potential in regenerative medicine as a simple, efficient and scalable alternative. In this study, we electrospun PLLA/PCL blends of different weight ratios into nanofibrous scaffolds (NFS) and their properties were detected including morphology, porosity, degradation, ATR-FTIR analysis, stress-stain assay, and inflammatory reaction. To explore the biocompatibility of the NFS we synthesized, human adipose-derived stem cells (hASCs) were used to evaluate proliferation, attachment, viability and multi-lineage differentiation. In conclusion, the electrospun PLLA/PCL blend nanofibrous scaffold with the indicated weight ratios all supported hASCs well. However, the NFS of 1/1 weight ratio showed better properties and cellular responses in all assessments, implying it a biocompatible scaffold for tissue engineering.  相似文献   

17.
Extracellular vesicles (EVs) are thought to mediate the transport of proteins and RNAs involved in intercellular communication. Here, we show dynamic changes in the buoyant density and abundance of EVs that are secreted by PC12 cells stimulated with nerve growth factor (NGF), N2A cells treated with retinoic acid to induce neural differentiation, and mouse embryonic stem cells (mESCs) differentiated into neuronal cells. EVs secreted from in vitro differentiated cells promote neural induction of mESCs. Cyclin D1 enriched within the EVs derived from differentiated neuronal cells contributes to this induction. EVs purified from cells overexpressing cyclin D1 are more potent in neural induction of mESC cells. Depletion of cyclin D1 from the EVs reduced the neural induction effect. Our results suggest that EVs regulate neural development through sorting of cyclin D1.  相似文献   

18.
Two-dimensional vs three-dimensional culture conditions, such as the presence of extracellular matrix components, could deeply influence the cell fate and properties. In this paper we investigated proliferation, differentiation, survival, apoptosis, growth and neurotrophic factor synthesis of rat embryonic stem cells (RESCs) cultured in 2D and 3D conditions generated using Cultrex® Basement Membrane Extract (BME) and in poly-(l-lactic acid) (PLLA) electrospun sub-micrometric fibres. It is demonstrated that, in the absence of other instructive stimuli, growth, differentiation and paracrine activity of RESCs are directly affected by the different microenvironment provided by the scaffold. In particular, RESCs grown on an electrospun PLLA scaffolds coated or not with BME have a higher proliferation rate, higher production of bioactive nerve growth factor (NGF) and vascular endothelial growth factor (VEGF) compared to standard 2D conditions, lasting for at least 2 weeks. Due to the high mechanical flexibility of PLLA electrospun scaffolds, the PLLA/stem cell culture system offers an interesting potential for implantable neural repair devices.  相似文献   

19.
Valproic acid (VPA) is an inhibitor of histone deacetylases (HDACs) that can regulate differentiation and proliferation of stem cells by epigenetic mechanisms. We investigated VPA induced histone H3 and H4 acetylation in adipose derived stem cells (ADSCs) transdifferentiated into neuron-like cells (NLCs). Rat ADSCs were transdifferentiated into neural stem cells (NSCs) that had been generated from neurospheres. The NSCs were differentiated into NLCs by induction with different concentrations of VPA at 24, 48 and 72 h. The NLCs were evaluated using anti-H3 and -H4 antibodies, and ADSCs, NSCs and NLCs were evaluated using immunofluorescence. The ADSCs were immunoreactive to CD90 and CD49d, but not to CD45 and CD31. Both the neurospheres and NSCs were immunostained with nestin and neurofilament 68. The neurospheres expressed Musashi1, Sox2 and Neu N genes as determined by RT-PCR. Our dose-response study indicated that the optimal concentration of VPA was 1 mM at 72 h. Histone acetylation levels of H3 and H4 immunostaining intensities in NLCs were significantly greater than for ADSCs and NSCs. VPA alters H4 and H3 acetylation immunoreactivities of ADSCs transdifferentiated into NLCs.  相似文献   

20.
In this work, N-methylene phosphonic chitosan (NMPC) based hydrogels and electrospun nanofibrous scaffolds are reported with objective to obtain osteoconductive and osteoinductive matrixes for bone grafting applications. NMPC, a phosphorylated derivative of chitosan, is known to mimic the function of non collagenous phosphoproteins in providing nucleation sites for biomineralization. NMPC hydrogels were prepared by crosslinking between NMPC and genipin. A detailed investigation of physicochemical properties of NMPC solutions is also carried out in order to obtain beads free nanofibers. Both NMPC gels and nanofibers were further evaluated for their biomineralization potential and biocompatibility with human osteoblast like cells. Results indicated that hydrogels and nanofibrous scaffolds NMPC are biocompatible and significantly osteoinductive compared to tissue culture plate controls. However, cells seeded on nanofibrous scaffolds exhibited greater proliferation measured by MTT assay, and higher expression of early markers for osteogenic differentiation proving the superior applicability of nanofibrous scaffolds for bone grafting applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号