首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bone marrow is believed to play important roles during fracture healing such as providing progenitor cells for inflammation, matrix remodeling, and cartilage and bone formation. Given the complex nature of bone repair, it remains difficult to distinguish the contributions of various cell types. Here we describe a mouse model based on bone marrow transplantation and genetic labeling to track cells originating from bone marrow during fracture healing. Following lethal irradiation and engraftment of bone marrow expressing the LacZ transgene constitutively, wild type mice underwent tibial fracture. Donor bone marrow-derived cells, which originated from the hematopoietic compartment, did not participate in the chondrogenic and osteogenic lineages during fracture healing. Instead, the donor bone marrow contributed to inflammatory and bone resorbing cells. This model can be exploited in the future to investigate the role of inflammation and matrix remodeling during bone repair, independent from osteogenesis and chondrogenesis.  相似文献   

2.
骨性关节炎(OA)是一种退行性病变,表现为关节软骨破坏,关节边缘骨赘形成,并伴有不同程度滑膜炎症,其病因学和发病机制还不是十分清楚。研究表明致炎细胞因子在骨性关节炎病发病的病理生理过程中起着重要的作用。本综述讨论目前关于致炎细胞因子在OA病理生理中的作用机制以及抗致炎细胞因子在治疗OA中的新进展。  相似文献   

3.
Regulation of fracture repair by growth factors.   总被引:39,自引:0,他引:39  
Fractured bones heal by a cascade of cellular events in which mesenchymal cells respond to unknown regulators by proliferating, differentiating, and synthesizing extracellular matrix. Current concepts suggest that growth factors may regulate different steps in this cascade (10). Recent studies suggest regulatory roles for PDGF, aFGF, bFGF, and TGF-beta in the initiation and the development of the fracture callus. Fracture healing begins immediately following injury, when growth factors, including TGF-beta 1 and PDGF, are released into the fracture hematoma by platelets and inflammatory cells. TGF-beta 1 and FGF are synthesized by osteoblasts and chondrocytes throughout the healing process. TGF-beta 1 and PDGF appear to have an influence on the initiation of fracture repair and the formation of cartilage and intramembranous bone in the initiation of callus formation. Acidic FGF is synthesized by chondrocytes, chondrocyte precursors, and macrophages. It appears to stimulate the proliferation of immature chondrocytes or precursors, and indirectly regulates chondrocyte maturation and the expression of the cartilage matrix. Presumably, growth factors in the callus at later times regulate additional steps in repair of the bone after fracture. These studies suggest that growth factors are central regulators of cellular proliferation, differentiation, and extracellular matrix synthesis during fracture repair. Abnormal growth factor expression has been implicated as causing impaired or abnormal healing in other tissues, suggesting that altered growth factor expression also may be responsible for abnormal or delayed fracture repair. As a complete understanding of fracture-healing regulation evolves, we expect new insights into the etiology of abnormal or delayed fracture healing, and possibly new therapies for these difficult clinical problems.  相似文献   

4.
Fracture healing in long bones is a sequential multistep cascade of hemostasis, transient inflammation, chemotaxis of progenitor cells, mitosis, differentiation of cartilage, and replacement with bone. This multistep cascade is orchestrated by cytokines and morphogens. Members of the interleukin (IL)-17 family, including IL-17B, have been identified in cartilage, but their expression during fracture healing is unknown. In this study, we determined the immunolocalization of cytokines IL-17A and IL-17B, along with the IL-17 receptor (IL-17R) and IL-17 receptor-like protein (IL-17RL), during the sequence of fracture repair in a standard model. The results were extended to developmental changes in the epiphyseal growth plate of long bones. Members of the IL-17 family were localized in chondrocytes in the fracture callus. Moreover, we found significant parallels to the localization of these cytokines and their receptors in chondrocytes during an endochondral differentiation program in the epiphyseal growth plate.  相似文献   

5.
Fracture healing is a specialized post-natal repair process that recapitulates aspects of embryological skeletal development. While many of the molecular mechanisms that control cellular differentiation and growth during embryogenesis recur during fracture healing, these processes take place in a post-natal environment that is unique and distinct from those which exist during embryogenesis. This Prospect Article will highlight a number of central biological processes that are believed to be crucial in the embryonic differentiation and growth of skeletal tissues and review the functional role of these processes during fracture healing. Specific aspects of fracture healing that will be considered in relation to embryological development are: (1) the anatomic structure of the fracture callus as it evolves during healing; (2) the origins of stem cells and morphogenetic signals that facilitate the repair process; (3) the role of the biomechanical environment in controlling cellular differentiation during repair; (4) the role of three key groups of soluble factors, pro-inflammatory cytokines, the TGF-beta superfamily, and angiogenic factors, during repair; and (5) the relationship of the genetic components that control bone mass and remodeling to the mechanisms that control skeletal tissue repair in response to fracture.  相似文献   

6.
During endochondral bone development, bone‐forming osteoblasts have to colonize the regions of cartilage that will be replaced by bone. In adulthood, bone remodeling and repair require osteogenic cells to reach the sites that need to be rebuilt, as a prerequisite for skeletal health. A failure of osteoblasts to reach the sites in need of bone formation may contribute to impaired fracture repair. Conversely, stimulation of osteogenic cell recruitment may be a promising osteo‐anabolic strategy to improve bone formation in low bone mass disorders such as osteoporosis and in bone regeneration applications. Yet, still relatively little is known about the cellular and molecular mechanisms controlling osteogenic cell recruitment to sites of bone formation. In vitro, several secreted growth factors have been shown to induce osteogenic cell migration. Recent studies have started to shed light on the role of such chemotactic signals in the regulation of osteoblast recruitment during bone remodeling. Moreover, trafficking of osteogenic cells during endochondral bone development and repair was visualized in vivo by lineage tracing, revealing that the capacity of osteoblast lineage cells to move into new bone centers is largely confined to undifferentiated osteoprogenitors, and coupled to angiogenic invasion of the bone‐modeling cartilage intermediate. It is well known that the presence of blood vessels is absolutely required for bone formation, and that a close spatial and temporal relationship exists between osteogenesis and angiogenesis. Studies using genetically modified mouse models have identified some of the molecular constituents of this osteogenic–angiogenic coupling. This article reviews the current knowledge on the process of osteoblast lineage cell recruitment to sites of active bone formation in skeletal development, remodeling, and repair, considering the role of chemo‐attractants for osteogenic cells and the interplay between osteogenesis and angiogenesis in the control of bone formation. Birth Defects Research (Part C) 99:170–191, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
Extracellular matrix (ECM) remodeling is important during bone development and repair. Because matrix metalloproteinase 13 (MMP13, collagenase-3) plays a role in long bone development, we have examined its role during adult skeletal repair. In this study we find that MMP13 is expressed by hypertrophic chondrocytes and osteoblasts in the fracture callus. We demonstrate that MMP13 is required for proper resorption of hypertrophic cartilage and for normal bone remodeling during non-stabilized fracture healing, which occurs via endochondral ossification. However, no difference in callus strength was detected in the absence of MMP13. Transplant of wild-type bone marrow, which reconstitutes cells only of the hematopoietic lineage, did not rescue the endochondral repair defect, indicating that impaired healing in Mmp13-/- mice is intrinsic to cartilage and bone. Mmp13-/- mice also exhibited altered bone remodeling during healing of stabilized fractures and cortical defects via intramembranous ossification. This indicates that the bone phenotype occurs independently from the cartilage phenotype. Taken together, our findings demonstrate that MMP13 is involved in normal remodeling of bone and cartilage during adult skeletal repair, and that MMP13 may act directly in the initial stages of ECM degradation in these tissues prior to invasion of blood vessels and osteoclasts.  相似文献   

8.
While it is well known that the presence of lymphocytes and cytokines are important for fracture healing, the exact role of the various cytokines expressed by cells of the immune system on osteoblast biology remains unclear. To study the role of inflammatory cytokines in fracture repair, we studied tibial bone healing in wild-type and Rag1(-/-) mice. Histological analysis, μCT stereology, biomechanical testing, calcein staining and quantitative RNA gene expression studies were performed on healing tibial fractures. These data provide support for Rag1(-/-) mice as a model of impaired fracture healing compared to wild-type. Moreover, the pro-inflammatory cytokine, IL-17F, was found to be a key mediator in the cellular response of the immune system in osteogenesis. In vitro studies showed that IL-17F alone stimulated osteoblast maturation. We propose a model in which the Th17 subset of T-lymphocytes produces IL-17F to stimulate bone healing. This is a pivotal link in advancing our current understanding of the molecular and cellular basis of fracture healing, which in turn may aid in optimizing fracture management and in the treatment of impaired bone healing.  相似文献   

9.
10.
Fracture repair recapitulates in adult organisms the sequence of cell biological events of endochondral ossification during skeletal development and growth. After initial inflammation and deposition of granulation tissue, a cartilaginous callus is formed which, subsequently, is remodeled into bone. In part, bone formation is influenced also by the properties of the extracellular matrix of the cartilaginous callus. Deletion of individual macromolecular components can alter extracellular matrix suprastructures, and hence stability and organization of mesenchymal tissues. Here, we took advantage of the collagen IX knockout mouse model to better understand the role of this collagen for organization, differentiation and maturation of a cartilaginous template during formation of new bone. Although a seemingly crucial component of cartilage fibrils is missing, collagen IX-deficient mice develop normally, but are predisposed to premature joint cartilage degeneration. However, we show here that lack of collagen IX alters the time course of callus differentiation during bone fracture healing. The maturation of cartilage matrix was delayed in collagen IX-deficient mice calli as judged by collagen X expression during the repair phase and the total amount of cartilage matrix was reduced. Entering the remodeling phase of fracture healing, Col9a1(-/-) calli retained a larger percentage of cartilage matrix than in wild type indicating also a delayed formation of new bone. We concluded that endochondral bone formation can occur in collagen IX knockout mice but is impaired under conditions of stress, such as the repair of an unfixed fractured long bone.  相似文献   

11.
The Notch signaling pathway is an important regulator of embryological bone development, and many aspects of development are recapitulated during bone repair. We have previously reported that Notch signaling components are upregulated during bone fracture healing. However, the significance of the Notch pathway in bone regeneration has not been described. Therefore, the objective of this study was to determine the importance of Notch signaling in regulating bone fracture healing by using a temporally controlled inducible transgenic mouse model (Mx1-Cre;dnMAMLf/-) to impair RBPjκ-mediated canonical Notch signaling. The Mx1 promoter was synthetically activated resulting in temporally regulated systemic dnMAML expression just prior to creation of bilateral tibial fractures. This allowed for mice to undergo unaltered embryological and post-natal skeletal development. Results showed that systemic Notch inhibition prolonged expression of inflammatory cytokines and neutrophil cell inflammation, and reduced the proportion of cartilage formation within the callus at 10 days-post-fracture (dpf) Notch inhibition did not affect early bone formation at 10dpf, but significantly altered bone maturation and remodeling at 20dpf. Increased bone volume fraction in dnMAML fractures, which was due to a moderate decrease in callus size with no change in bone mass, coincided with increased trabecular thickness but decreased connectivity density, indicating that patterning of bone was altered. Notch inhibition decreased total osteogenic cell density, which was comprised of more osteocytes rather than osteoblasts. dnMAML also decreased osteoclast density, suggesting that osteoclast activity may also be important for altered fracture healing. It is likely that systemic Notch inhibition had both direct effects within cell types as well as indirect effects initiated by temporally upstream events in the fracture healing cascade. Surprisingly, Notch inhibition did not alter cell proliferation. In conclusion, our results demonstrate that the Notch signaling pathway is required for the proper temporal progression of events required for successful bone fracture healing.  相似文献   

12.
Addendum to: Diarra D, Stolina M, Polzer K, Zwerina J, Ominsky MS, Dwyer D, Korb A, Smolen J, Hoffmann M, Scheinecker C, van der Heijde D, Landewe R, Lacey D, Richards WG and Schett G. Dickkopf-1 Is a Master Regulator of Joint Remodeling. Nat Med. 2007; 13:156-63. Remodeling of joints is a key feature of inflammatory and degenerative joint disease. Bone erosion, cartilage degeneration and growth of bony spurs termed osteophytes are key features of structural joint pathology in the course of arthritis, which lead to impairment of joint function. Understanding their molecular mechanisms is essential to tailor targeted therapeutic approaches to protect joint architecture from inflammatory and mechanical stress. This addendum summarizes the new insights in the molecular regulation of bone formation in the joint and its relation to bone resorption. It describes how inflammatory cytokines impair bone formation and block the repair response of joints towards inflammatory stimuli. It particularly points out the key role of Dickkopf-1 protein, a regulator of the Wingless signaling and inhibitor of bone formation. This new link between inflammation and bone formation is also crucial for explaining the generation of osteophytes, bony spurs along joints, which are characterized by new bone and cartilage formation. This mechanism is largely dependent on an activation of wingless protein signaling and can lead to complete joint fusion. This addendum summarized the current concepts of joint remodeling in the limelight of these new findings.  相似文献   

13.
The involvement of fibroblast growth factor-2 (FGF-2) during the repair process in rabbit full-thickness defects of articular cartilage was studied. Fibroblast growth factor-2 (50 pg/h) was administered for 2 weeks in a 5mm defect of articular cartilage, which is large enough not to repair spontaneously. The administration of FGF-2 resulted in the regeneration of the articular cartilage and the subchondral bone within 8 weeks. In these defects, undifferentiated mesenchymal cells initiated chondrogenic differentiation coupled with replacement by subchondral bone, resulting in the resurfacing of the defects with hyaline cartilage and the recovery of subchondral bone up to the original bone–articular cartilage junction. In rabbits, full-thickness defects are capable of regenerating articular cartilage as long as the defect size is limited to ≤3 mm in diameter. In the defects, strong immunoreactivity for FGF-2 was observed in the granulation tissue filling the defects in the early stage of repair, in association with the expression of FGF-2 mRNA shown by in situ hybridization. Once the undifferentiated mesenchymal cells had differentiated into chondrocytes, both the immunoreactivity and the in situ hybridization signal declined significantly. Upon the local administration of a monoclonal antibody against FGF-2 (bFM-1, 50ng/h), the defects were filled with fibrous tissue and no resurfacing hyaline cartilage was formed. Compared to the non-treated defects, there were marked increases in FGF-2 immunoreactivity and the overexpression of FGF-2 mRNA in the reparative tissue in the bFM-1 -treated defects. This rebound phenomenon indicates that the autocrine FGF-2 signaling is critically important for the regeneration of articular cartilage.  相似文献   

14.
We examined immunohistochemically the fracture repair process in rat tibial bone using antibodies to PCNA, BMP2, TGF-beta 1,-2,-3, TGF-beta R1,-R2, bFGF, bFGFR, PDGF, VEGF, and S-100. The peak level of cell proliferation as revealed by PCNA labelling appeared first in primitive mesenchymal cells and inflammatory cells at the fracture edges and neighboring periosteum at 2-days after fracture, followed by the peaks of periosteal primitive fibroblasts and chondroblasts, which appeared at fracture edges at 3- and 4-days after fracture, respectively. BMP2 was weakly positive in primitive mesenchymal cells, osteoblasts and chondroblasts. At 3-days post-fracture, periosteal osteoblasts produced osteoid tissue and callus with marrow spaces lined by osteoblasts and osteoclasts, and all primitive mesenchymal cells and osteoblasts were positive for TGF-beta 1,-2,-3, and TGF-beta R1,-R2. They were also positive for vascular growth factors bFGF, FGFR and PDGF, but negative for VEGF, and the peak of PCNA labelling of vascular endothelial cells in the marrow space was delayed to 4-days after fracture. Chondroblasts at fracture edges produced hypertrophic chondrocytes at 5-days after fracture and they were positive for TGF-beta 1,-2,-3, and TGF-beta R1,-R2. Primitive chondroblasts were positive for vascular growth factors VEGF as well as bFGF, FGFR, and the peak of PCNA labelling of vascular endothelial cells in the cartilage was at 5-days after fracture. Hypertrophic chondrocytes were also positive for these growth factors but negative for bFGF and bFGFR. S-100 protein-induced calcification was only positive on chondroblasts and hypertrophic chondrocytes. At 7-days after fracture, bone began to be formed from the cartilage at fracture edges, by a process similar to bone formation in the growth plate. Enchondral ossification established a bridge between both fracture edges and periosteal membranous ossification encompassed the fracture site like a sheath at 14 day after fracture. Our study of fracture repair of bone indicates that this process is complex and occurs through various steps involving various growth factors.  相似文献   

15.
Altered fracture repair in the absence of MMP9   总被引:13,自引:0,他引:13  
The regeneration of adult skeletal tissues requires the timely recruitment of skeletal progenitor cells to an injury site, the differentiation of these cells into bone or cartilage, and the re-establishment of a vascular network to maintain cell viability. Disturbances in any of these cellular events can have a detrimental effect on the process of skeletal repair. Although fracture repair has been compared with fetal skeletal development, the extent to which the reparative process actually recapitulates the fetal program remains uncertain. Here, we provide the first genetic evidence that matrix metalloproteinase 9 (MMP9) regulates crucial events during adult fracture repair. We demonstrate that MMP9 mediates vascular invasion of the hypertrophic cartilage callus, and that Mmp9(-/-) mice have non-unions and delayed unions of their fractures caused by persistent cartilage at the injury site. This MMP9- dependent delay in skeletal healing is not due to a lack of vascular endothelial growth factor (VEGF) or VEGF receptor expression, but may instead be due to the lack of VEGF bioavailability in the mutant because recombinant VEGF can rescue Mmp9(-/-) non-unions. We also found that Mmp9(-/-) mice generate a large cartilage callus even when fractured bones are stabilized, which implicates MMP9 in the regulation of chondrogenic and osteogenic cell differentiation during early stages of repair. In conclusion, the resemblance between Mmp9(-/-) fetal skeletal defects and those that emerge during Mmp9(-/-) adult repair offer the strongest evidence to date that similar mechanisms are employed to achieve bone formation, regardless of age.  相似文献   

16.
Yu YY  Lieu S  Hu D  Miclau T  Colnot C 《PloS one》2012,7(2):e31771
Numerous factors can affect skeletal regeneration, including the extent of bone injury, mechanical loading, inflammation and exogenous molecules. Bisphosphonates are anticatabolic agents that have been widely used to treat a variety of metabolic bone diseases. Zoledronate (ZA), a nitrogen-containing bisphosphonate (N-BP), is the most potent bisphosphonate among the clinically approved bisphosphonates. Cases of bisphosphonate-induced osteonecrosis of the jaw have been reported in patients receiving long term N-BP treatment. Yet, osteonecrosis does not occur in long bones. The aim of this study was to compare the effects of zoledronate on long bone and cranial bone regeneration using a previously established model of non-stabilized tibial fractures and a new model of mandibular fracture repair. Contrary to tibial fractures, which heal mainly through endochondral ossification, mandibular fractures healed via endochondral and intramembranous ossification with a lesser degree of endochondral ossification compared to tibial fractures. In the tibia, ZA reduced callus and cartilage formation during the early stages of repair. In parallel, we found a delay in cartilage hypertrophy and a decrease in angiogenesis during the soft callus phase of repair. During later stages of repair, ZA delayed callus, cartilage and bone remodeling. In the mandible, ZA delayed callus, cartilage and bone remodeling in correlation with a decrease in osteoclast number during the soft and hard callus phases of repair. These results reveal a more profound impact of ZA on cartilage and bone remodeling in the mandible compared to the tibia. This may predispose mandible bone to adverse effects of ZA in disease conditions. These results also imply that therapeutic effects of ZA may need to be optimized using time and dose-specific treatments in cranial versus long bones.  相似文献   

17.
Following bone fracture, the repair process starts with an inflammatory reaction at the fracture site. Fracture healing is disturbed when the initial inflammation is increased or prolonged, whereby, a balanced inflammatory response is anticipated to be crucial for fracture healing, because it may induce down-stream responses leading to tissue repair. However, the impact of the immune response on fracture healing remains poorly understood. Here, we investigated bone healing in NOD/scid-IL2Rγcnull mice, which exhibit severe defects in innate and adaptive immunity, by biomechanical testing, histomorphometry and micro-computed tomography. We demonstrated that NOD/scid-IL2Rγcnull mice exhibited normal skeletal anatomy and a mild bone phenotype with a slightly reduced bone mass in the trabecular compartment in comparison to immunocompetent Balb/c mice. Fracture healing was impaired in immunodeficient NOD/scid-IL2Rγcnull mice. Callus bone content was unaffected during the early healing stage, whereas it was significantly reduced during the later healing period. Concomitantly, the amount of cartilage was significantly increased, indicating delayed endochondral ossification, most likely due to the decreased osteoclast activity observed in cells isolated from NOD/scid-IL2Rγcnull mice. Our results suggest that—under aseptic, uncomplicated conditions—the immediate immune response after fracture is non-essential for the initiation of bone formation. However, an intact immune system in general is important for successful bone healing, because endochondral ossification is delayed in immunodeficient NOD/scid-IL2Rγcnull mice.  相似文献   

18.
The injured growth plate cartilage is often repaired by bony tissue, resulting in impaired bone growth in children. Bone morphogenic proteins (BMPs) are important for bone fracture repair, and as a step to characterize potential involvement of BMPs in bony repair of injured growth plate, expression of BMPs and receptors (BMP-R) was examined by quantitative RT-PCR and immunohistochemistry in rat injured tibial growth plate. During the inflammatory response on day 1, slightly increased expression of BMP-3, BMP-4, BMP-R1a, and BMP-R2 was observed, with immunostaining seen among inflammatory cells at the injury site. During mesenchymal infiltration and osteogenic responses on days 3-14, moderately increased expression of BMP-2, -3, -4, -7, and BMP-R1a was found, with immunostaining observed among infiltrated mesenchymal cells and differentiated osteoblasts lining bony trabeculae. During maturation phase on days 14-25, only BMP-7 was seen upregulated slightly and was localized in osteoblasts and marrow cells at the injury site. The temporospatial expression of BMPs and receptors at the injured growth plate suggests potential involvement of BMP-3 and -4 in regulating the inflammatory response or as its mediators in modulating downstream events, and BMP-2, -3, -4, and -7 in the fibrogenic and osteogenic responses, and BMP-7 in bone remodeling at the injured growth plate.  相似文献   

19.
Periosteum provides a major source of mesenchymal progenitor cells for bone fracture repair. Combining cell-specific targeted Cox-2 gene deletion approaches with in vitro analyses of the differentiation of periosteum-derived mesenchymal progenitor cells (PDMPCs), here we demonstrate a spatial and temporal role for Cox-2 function in the modulation of osteogenic and chondrogenic differentiation of periosteal progenitors in fracture repair. Prx1Cre-targeted Cox-2 gene deletion in mesenchyme resulted in marked reduction of intramembraneous and endochondral bone repair, leading to accumulation of poorly differentiated mesenchyme and immature cartilage in periosteal callus. In contrast, Col2Cre-targeted Cox-2 gene deletion in cartilage resulted in a deficiency primarily in cartilage conversion into bone. Further cell culture analyses using Cox-2 deficient PDMPCs demonstrated reduced osteogenic differentiation in monolayer cultures, blocked chondrocyte differentiation and hypertrophy in high density micromass cultures. Gene expression microarray analyses demonstrated downregulation of a key set of genes associated with bone/cartilage formation and remodeling, namely Sox9, Runx2, Osx, MMP9, VDR and RANKL. Pathway analyses demonstrated dysregulation of the HIF-1, PI3K-AKT and Wnt pathways in Cox-2 deficient cells. Collectively, our data highlight a crucial role for Cox-2 from cells of mesenchymal lineages in modulating key pathways that control periosteal progenitor cell growth, differentiation, and angiogenesis in fracture repair.  相似文献   

20.
Wnt signalling has an essential role in regulating bone formation and remodelling during embryonic development and throughout postnatal and adult life. Specifically, Wnt signalling regulates bone formation by controlling embryonic cartilage development and postnatal chondrogenesis, osteoblastogenesis, osteoclastogenesis, endochondral bone formation, and bone remodelling. Abnormalities in the function of Wnt genes give rise to or contribute to the development of several pathological bone conditions, including abnormal bone mass, osteosarcomas and bone loss in multiple myeloma. Furthermore, Wnt signalling is activated during bone fracture repair and plays a crucial role in regulating bone regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号