首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Osteoclasts (OCs) are multinuclear giant cells responsible for bone resorption, and an excessive bone resorption by OCs plays an important role in osteoporosis. Commonly used drugs for the treatment of osteoporosis have severe side effects. As such, identification of alternative treatments is essential. Garcinol, a polyisoprenylated benzophenone extracted from the fruit of Garcinia indica, has shown a strong antitumor effect through the nuclear factor-κB (NF-κB) and mitogen-associated protein kinases (MAPK) signaling pathways. However, the role of garcinol in the osteoclastogenesis is still unclear. Here, we demonstrated that garcinol can inhibit the receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis, osteoclastogenesis-related gene expression, the f-actin ring, and resorption pit formation. In addition, garcinol abrogated RANKL-induced osteoclastogenesis by attenuating the degradation of the MAPK, NF-κB, and PI3K-AKT signaling pathway as well as downstream factors c-jun, c-fos, and NFATC1. In vivo, suppression of osteoclastogenesis by garcinol was evidenced by marked inhibition of lipopolysaccharide-induced bone resorption. In conclusion, our data demonstrated that garcinol inhibited the RANKL-induced osteoclastogenesis by suppressing the MAPK, NF-κB, and PI3K-AKT signaling pathways and thus has potential as a novel therapeutic option for osteolytic bone diseases.  相似文献   

3.
The receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-RANK regulatory axis is a major regulator of osteoclast differentiation and activation. Icariin, a flavonol glycoside isolated from the Epimedium herb, has been reported to prevents bone loss in ovariectomized mice and inhibits wear particle-induced osteolysis. However, the molecular mechanism through which icariin inhibits RANKL-induced osteoclastogenesis has not been fully understood. Therefore, we aimed to investigate the effects of icariin on RANKL-induced osteoclastogenesis and to elucidate the mechanism underlying this effect. Our results showed that RANKL-induced osteoclastogenesis was inhibited by icariin in bone marrow macrophages (BMMs) and RAW264.7?cells, and that this effect was due to suppression of NF-κB and mitogen-activated protein kinase (MAPK) activation. In addition, icariin inhibited F-actin ring formation and attenuated the bone resorption ability of mature osteoclasts. Collectively, our results indicate that icariin may be a promising potential candidate for the treatment of osteolytic diseases such as osteoporosis. Moreover, our findings lay the foundation for understanding and intervening in osteoclast-related diseases at the molecular level.  相似文献   

4.
5.
6.
Osteoporosis is a common orthopedic disease which is associated with hyper-activated osteoclastogenesis. Daphnetin is a natural coumarin derivative isolated from Genus Daphne, which possesses antiarthritis effect. However, the role of daphnetin in osteoclastogenesis has not been illustrated. This study aimed to investigate the effects of daphnetin on receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis in vitro. Our results showed that the osteoclast formation was significantly suppressed by daphnetin treatment in bone marrow-derived macrophages (BMMs), which was illustrated by reduced number of tartrate-resistant acid phosphatase positive multinucleated osteoclasts and decreased expression levels of tumor necrosis factor receptor-associated factors (TRAF6), c-Fos, nuclear factor of activated T cells c1, and cathepsin K. RANKL caused significant induction effects in reactive oxygen species (ROS) generation and nicotinamide adenine dinucleotide phosphate oxidase activity, whereas the induction was dramatically reduced after pretreatment with daphnetin. In addition, daphnetin prevented the RANKL-induced activation of NF-κB and Akt/GSK-3β pathways in BMMs. These findings indicated that daphnetin exhibited an inhibitory effect on RANKL-induced osteoclastogenesis in vitro. The effect of daphnetin might be mediated by inhibiting ROS signal transduction, as well as preventing the activation of NF-κB and Akt/GSK-3β signaling pathways. These findings indicated that daphnetin might be considered as a new therapeutic approach for the osteoporosis treatment.  相似文献   

7.
Excessive osteoclast formation and function are considered as the main causes of bone lytic disorders such as osteoporosis and osteolysis. Therefore, the osteoclast is a potential therapeutic target for the treatment of osteoporosis or other osteoclast-related diseases. Helvolic acid (HA), a mycotoxin originally isolated from Aspergillus fumigatus , has been discovered as an effective broad-spectrum antibacterial agent and has a wide range of pharmacological properties. Herein, for the first time, HA was demonstrated to be capable of significantly inhibiting receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis and bone resorption in vitro by suppressing nuclear factor of activated T cells 1 (NFATc1) activation. This inhibition was followed by the dramatically decreased expression of NFATc1-targeted genes including Ctr (encoding calcitonin receptor), Acp5 (encoding tartrate-resistant acid phosphatase [TRAcP]), Ctsk (encoding cathepsin K), Atp6v0d2 (encoding the vacuolar H+ ATPase V0 subunit d2 [V-ATPase-d2]) and Mmp9 (encoding matrix metallopeptidase 9) which are osteoclastic-specific genes required for osteoclast formation and function. Mechanistically, HA was shown to greatly attenuate multiple upstream pathways including extracellular signal-regulated kinase (ERK) phosphorylation, c-Fos signaling, and intracellular Ca 2+ oscillation, but had little effect on nuclear factor-κB (NF-κB) activation. In addition, HA also diminished the RANKL-induced generation of intracellular reactive oxygen species. Taken together, our study indicated HA effectively suppressed RANKL-induced osteoclast formation and function. Thus, we propose that HA can be potentially used in the development of a novel drug for osteoclast-related bone diseases.  相似文献   

8.
Osteoclasts are responsible for bone resorption and play a pivotal role in the pathogenesis of osteolytic disorders. NF-κB is a set of nuclear factors that bind to consensus DNA sequences called κB sites, and is essential for osteoclast formation and survival. NF-κB signalling pathways are strictly regulated to maintain bone homeostasis by cytokines such as RANKL, TNF-α and IL-1, which differentially regulate classical and/or alternative NF-κB pathways in osteoclastic cells. These pathways are also modulated by NF-κB mediators, including TRAF6, aPKC, p62/SQSTM1 and deubiquitinating enzyme CYLD that are involved in the ubiquitin–proteasome system during RANK-mediated osteoclastogenesis. Abnormal activation of NF-κB signalling in osteoclasts has been associated with excessive osteoclastic activity, and frequently observed in osteolytic conditions, including periprosthetic osteolysis, arthritis, Paget's disease of bone, and periodontitis. NF-κB modulators such as parthenolide and NEMO-binding domain peptide demonstrate therapeutic effects on inflammation-induced bone destruction in mouse models. Unravelling the structure and function of NF-κB pathways in osteoclasts and other cell types will be important in developing new strategies for treatments of bone diseases.  相似文献   

9.
During osteoporosis, fat mass and obesity-associated protein (FTO) promotes the shift of bone marrow mesenchymal stem cells to adipocytes and represses osteoblast activity. However, the role and mechanisms of FTO on osteoclast formation and bone resorption remain unknown. In this study, we investigated the effect of FTO on RAW264.7 cells and bone marrow monocytes (BMMs)-derived osteoclasts in vitro and observed the influence of FTO on ovariectomized (OVX) mice model to mimic postmenopausal osteoporosis in vivo. Results found that FTO was up-regulated in BMMs from OVX mice. Double immunofluorescence assay showed co-localization of FTO with tartrate-resistant acid phosphatase (TRAP) in femurs of OVX mice. FTO overexpression enhanced TRAP-positive osteoclasts and F-actin ring formation in RAW264.7 cells upon RANKL stimulation. The expression of osteoclast differentiation-related genes, including nuclear factor of activated T cells c1 (NFATc1) and c-FOS, was upregulated in BMMs and RAW264.7 cells after FTO overexpression. FTO overexpression induced the phosphorylation and nuclear translocation of factor-kappa B (NF-κB) p65 in BMMs and RAW264.7 cells exposed to RANKL. ChIP and dual-luciferase assays revealed that FTO overexpression contributed to RANKL-induced binding of NF-κB to NFATc1 promoter. Rescue experiments suggested that FTO overexpression-mediated osteoclast differentiation was suppressed after intervention with a NF-κB inhibitor pyrrolidine dithiocarbamate. Further in vivo evidence revealed that FTO knockdown increased bone trabecula and bone mineral density, inhibited bone resorption and osteoclastogenesis in osteoporotic mice. Collectively, our research demonstrates that downregulated FTO inhibits bone resorption and osteoclastogenesis through NF-κB inactivation, which provides a novel reference for osteoporosis treatment.  相似文献   

10.
Osteolysis is characterized by overactivated osteoclast formation and potent bone resorption. It is enhanced in many osteoclast‐related diseases including osteoporosis and periprosthetic osteolysis. The shortage of effective treatments for these pathological processes emphasizes the importance of screening and identifying potential regimens that could attenuate the formation and function of osteoclasts. Dehydrocostus lactone (DHE) is a natural sesquiterpene lactone containing anti‐inflammatory properties. Here, we showed that DHE suppressed receptor activator of nuclear factor‐κB ligand (RANKL)‐induced osteoclast formation and osteoclast marker gene expression. It also inhibited F‐actin ring formation and bone resorption in a dose‐dependent manner in vitro. Moreover, DHE inhibited the RANKL‐induced phosphorylation of NF‐κB, mitigated bone erosion in vivo in lipopolysaccharide‐induced inflammatory bone loss model and particle‐induced calvarial osteolysis model. Together, these results suggest that DHE reduces osteoclast‐related bone loss via the modulation of NF‐κB activation during osteoclastogenesis indicating that it might be a useful treatment for osteoclast‐related skeletal disorders.  相似文献   

11.
Ang ES  Yang X  Chen H  Liu Q  Zheng MH  Xu J 《FEBS letters》2011,585(17):2755-2762
Osteolytic bone diseases including osteoporosis are commonly accompanied with enhanced osteoclast formation and bone resorption. Naringin, a natural occurring flavonoid has been found to protect against retinoic acid-induced osteoporosis and improve bone quality in rats. Here, we showed that naringin perturbs osteoclast formation and bone resorption by inhibiting RANK-mediated NF-κB and ERK signaling. Naringin suppressed gene expression of key osteoclast marker genes. Naringin was found to inhibit RANKL-induced activation of NF-κB by suppressing RANKL-mediated IκB-α degradation. In addition, naringin inhibited RANKL-induced phosphorylation of ERK. This study identifies naringin as an inhibitor for osteoclast formation and bone resorption, and provides evidence that natural compounds such as naringin might be beneficial as an alternative medicine for the prevention and treatment of osteolysis.  相似文献   

12.
We investigated the effects of a novel peroxisome proliferator-activated receptor γ (PPARγ) agonist, KR62776, on osteoclast differentiation and function, and on the underlying signaling pathways. KR62776 markedly suppressed differentiation into osteoclasts in various osteoclast model systems, including bone marrow mononuclear (BMM) cells and a co-culture of calvarial osteoblasts and BMM cells. KR62776 suppressed the activation of tartrate-resistant acid phosphatase (TRAP) and the expression of genes associated with osteoclast differentiation, such as TRAP, dendritic cell-specific transmembrane protein (DC-STAMP), and osteoclast-associated receptor (OSCAR). Furthermore, KR62776 reduced resorption pit formation in osteoclasts, and down-regulated genes essential for osteoclast activity, such as Src and αvβ3 integrin. An analysis of a signaling pathway showed that KR62776 inhibited the receptor activator of nuclear factor-κB ligand (RANKL)-induced activation of p38 mitogen-activated protein kinase (p38MAPK), extracellular regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and nuclear factor-κB (NF-κB). Together, these results demonstrate that KR62776 negatively affects osteoclast differentiation and activity by inhibiting the RANKL-induced activation of MAP kinases and NF-κB.  相似文献   

13.
Angelica sinensis (AS; Dang Gui), a traditional Chinese herb, has for centuries been used for the treatment of bone diseases, including osteoporosis and osteonecrosis. However, the effective ingredient and underlying mechanisms remain elusive. Here, we identified guaiacol as the active component of AS by two‐dimensional cell membrane chromatography/C18 column/time‐of‐flight mass spectrometry (2D CMC/C18 column/TOFMS). Guaiacol suppressed osteoclastogenesis and osteoclast function in bone marrow monocytes (BMMCs) and RAW264.7 cells in vitro in a dose‐dependent manner. Co‐immunoprecipitation indicated that guaiacol blocked RANK‐TRAF6 association and RANK‐C‐Src association. Moreover, guaiacol prevented phosphorylation of p65, p50, IκB (NF‐κB pathway), ERK, JNK, c‐fos, p38 (MAPK pathway) and Akt (AKT pathway), and reduced the expression levels of Cathepsin K, CTR, MMP‐9 and TRAP. Guaiacol also suppressed the expression of nuclear factor of activated T‐cells cytoplasmic 1(NFATc1) and the RANKL‐induced Ca2+ oscillation. In vivo, it ameliorated ovariectomy‐induced bone loss by suppressing excessive osteoclastogenesis. Taken together, our findings suggest that guaiacol inhibits RANKL‐induced osteoclastogenesis by blocking the interactions of RANK with TRAF6 and C‐Src, and by suppressing the NF‐κB, MAPK and AKT signalling pathways. Therefore, this compound shows therapeutic potential for osteoclastogenesis‐related bone diseases, including postmenopausal osteoporosis.  相似文献   

14.
Osteoclasts together with osteoblasts play pivotal roles in bone remodeling. The unique function and ability of osteoclasts to resorb bone makes them critical in both normal bone homeostasis and pathologic bone diseases such as osteoporosis and rheumatoid arthritis. Thus, new compounds that may inhibit osteoclastogenesis and osteoclast function may be of great value in the treatment of osteoclast-related diseases. In the present study, we examined the effect of jolkinolide B (JB), isolated from the root of Euphorbia fischeriana Steud on receptor activator of NF-κB ligand (RANKL)-induced osteoclast formation. We found that JB inhibited RANKL-induced osteoclast differentiation from bone marrow macrophages (BMMs) without cytotoxicity. Furthermore, the expression of osteoclastic marker genes, such as tartrate-resistant acid phosphatase (TRAP), cathepsin K (CtsK), and calcitonin receptor (CTR), was significantly inhibited. JB inhibited RANKL-induced activation of NF-κB by suppressing RANKL-mediated IκBα degradation. Moreover, JB inhibited RANKL-induced phosphorylation of mitogen-activated protein kinases (p38, JNK, and ERK). This study thus identifies JB as an inhibitor of osteoclast formation and provides evidence that JB might be an alternative medicine for preventing and treating osteolysis.  相似文献   

15.
16.
The differentiation of bone-resorbing osteoclasts is induced by RANKL signaling, and leads to the activation of NF-κB via TRAF6 activation. TRAF family member-associated NF-κB activator (TANK) acts as a negative regulator of Toll-like receptors (TLRs) and B-cell receptor (BCR) signaling by inhibiting TRAF6 activation. Tank(-/-) mice spontaneously develop autoimmune glomerular nephritis in an IL-6-dependent manner. Despite its importance in the TCRs and BCR-activated TRAF6 inhibition, the involvement of TANK in RANKL signaling is poorly understood. Here, we report that TANK is a negative regulator of osteoclast differentiation. The expression levels of TANK mRNA and protein were up-regulated during RANKL-induced osteoclastogenesis, and overexpression of TANK in vitro led to a decrease in osteoclast formation. The in vitro osteoclastogenesis of Tank(-/-) cells was significantly increased, accompanied by increased ubiquitination of TRAF6 and enhanced canonical NF-κB activation in response to RANKL stimulation. Tank(-/-) mice showed severe trabecular bone loss, but increased cortical bone mineral density, because of enhanced bone erosion and formation. TANK mRNA expression was induced during osteoblast differentiation and Tank(-/-) osteoblasts exhibited enhaced NF-κB activation, IL-11 expression, and bone nodule formation than wild-type control cells. Finally, wild-type mice transplanted with bone marrow cells from Tank(-/-) mice showed trabecular bone loss analogous to that in Tank(-/-) mice. These findings demonstrate that TANK is critical for osteoclastogenesis by regulating NF-κB, and is also important for proper bone remodeling.  相似文献   

17.
Osteoclast overactivation‐induced imbalance in bone remodelling leads to pathological bone destruction, which is a characteristic of many osteolytic diseases such as rheumatoid arthritis, osteoporosis, periprosthetic osteolysis and periodontitis. Natural compounds that suppress osteoclast formation and function have therapeutic potential for treating these diseases. Stachydrine (STA) is a bioactive alkaloid isolated from Leonurus heterophyllus Sweet and possesses antioxidant, anti‐inflammatory, anticancer and cardioprotective properties. However, its effects on osteoclast formation and function have been rarely described. In the present study, we found that STA suppressed receptor activator of nuclear factor‐κB (NF‐κB) ligand (RANKL)‐induced osteoclast formation and bone resorption, and reduced osteoclast‐related gene expression in vitro. Mechanistically, STA inhibited RANKL‐induced activation of NF‐κB and Akt signalling, thus suppressing nuclear factor of activated T cells c1 induction and nuclear translocation. In addition, STA alleviated bone loss and reduced osteoclast number in a murine model of LPS‐induced inflammatory bone loss. STA also inhibited the activities of NF‐κB and NFATc1 in vivo. Together, these results suggest that STA effectively inhibits osteoclastogenesis both in vitro and in vivo and therefore is a potential option for treating osteoclast‐related diseases.  相似文献   

18.
Osteolytic diseases are characterized by an increase in the number and/or activity of bone-resorbing osteoclasts. Identification of natural compounds that can suppress osteoclast formation and function is crucial for the prevention and treatment of osteolytic diseases. Vitexin, a naturally-derived flavonoid extracted from various medicinal plant species, demonstrates a broad range of pharmacological properties including anticancer and anti-inflammatory effects. Here in this study, we showed that vitexin exerts antiosteoclastogenic effects by directly inhibiting receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation and bone resorption in vitro and protected against lipopolysaccharide (LPS)-induced inflammatory osteolysis in vivo. Vitexin suppressed the early activation of ERK and p38 MAPK pathways in response to RANKL thereby attenuating the downstream induction of c-Fos and NFATc1, and abrogating the expression of osteoclast marker genes. Collectively, these results provide evidence for the therapeutic application of vitexin in the treatment of osteoclast-mediated bone lytic diseases.  相似文献   

19.
Osteoporosis is a devastating disease that features reduced bone quantity and microstructure, which causes fragility fracture and increases mortality, especially in the aged population. Due to the long-term side-effects of current drugs for osteoporosis, it is of importance to find other safe and effective medications. Ellagic acid (EA) is a phenolic compound found in nut galls, plant extracts, and fruits, and exhibits antioxidant and antineoplastic effects. Here, we showed that EA attenuated the formation and function of osteoclast dose-dependently. The underlying mechanism was further discovered by western blot, immunofluorescence assay, and luciferase assay, which elucidated that EA suppressed osteoclastogenesis and bone resorption mainly through attenuating receptor activator of nuclear factor-κB (NF-κB) ligand-induced NF-κB activation and extracellular signal-regulated kinase signaling pathways, accompanied by decreased protein expression of nuclear factor of activated T-cells calcineurin-dependent 1 and c-Fos. Moreover, EA inhibits osteoclast marker genes expression including Dc-stamp, Ctsk, Atp6v0d2, and Acp5. Intriguingly, we also found that EA treatment could significantly protect ovariectomy-induced bone loss in vivo. Conclusively, this study suggested that EA might have the therapeutic potentiality for preventing or treating osteoporosis.  相似文献   

20.
Osteoporosis (OS) is one of the most common healthy problems characterized by low bone mass. Osteoclast, the primary bone-resorbing cell, is responsible for destructive bone diseases including osteoporosis (OS). Cryptotanshinone (CTS), an active component extracted from the root of Salvia miltiorrhiza bunge, has been shown to prevent the destruction of cartilage and the thickening of subchondral bone in mice osteoarthritis models. However, its molecular mechanism in osteoclastogenesis needs to be determined. The aim of the current study was to explore the effect of CTS on osteoclastogenesis and further evaluate the underlying mechanism. Our results showed that CTS inhibited receptor activator of NF-κB ligand (RANKL)-induced the increase in tartrate-resistant acid phosphatase (TRAP) activity in bone marrow–derived macrophages (BMMs). In addition, the expressions of osteoclastogenesis-related marker proteins and nuclear factor of activated T-cells (NFAT) activation were suppressed by CTS treatment in BMMs. Furthermore, CTS attenuated RANKL-induced ERK phosphorylation and NF-κB activation in BMMs. These findings indicated that CTS inhibited RANKL-induced osteoclastogenesis by inhibiting ERK phosphorylation and NF-κB activation in BMMs. Thus, CTS may function as an inhibitor of osteoclastogenesis and may be considered as an alternative medicine for the prevention and treatment of OS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号