首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The nuclei of late vitellogenic oocytes of hibernating frogs Rana temporaria were studied. During this period of oogenesis, chromosomes are inactivated and surrounded by a fibrillar karyosphere capsule. Formation of the karyosphere capsule in grass frog oocytes has been investigated in detail at the light and electron microscopic levels, but the molecular composition of the capsule remains uncertain. Immunofluorescent staining of whole-mount preparations of oocyte nuclei revealed that the karyosphere capsule contained actin, lamins A, C, and B and snRNPs proteins. A putative role of these proteins in formation of the karyosphere capsule is discussed.  相似文献   

2.
3.
4.
M N Gruzova 《Tsitologiia》1975,17(3):219-237
The purpose of this review is to draw attention to the peculiar phenomenon during gametogenesis: the formation of the karyosphere. This phenomenon is characterized by concentration of all chromosomes in the limited area of the nucleus and may be considered as alternative of the genome in the state of lumpbrush chromosomes. The formation of the karyosphere is a widely spread phenomenon during oogenesis of different animal classes. The karyosphere can be developed during different stages of oogenesis in different organisms; but as a rule the chromosomes of diploten stage of meiosis take part in its formation. As to functional identity of the karyosphere in different species, special investigations are to be done, but contemporary knowledge of the karyosphere formation reveals some common feature:1) in the karyosphere the chromosomes are in a relatively spiral state as demonstrated by the positive Feulgen reaction; 2) there is a low level of RNA synthesis or the absence of it in the karyosphere; 3) during the karyosphere formation the nucleus is enriched by the acid proteins and a lot of protein granules and structures appearing in a close contact with the karysphere. The more typical examples of the karyosphere formation can be observed in the insect oocytes belonging to the nutrimentary type of oogenesis. In the oocytes of some animals the peculiar protein substances are formed around the chromosome knot and appear as a fibrillar zone. Such karyosphere appears to be a kind of capsule inside the nucleus. The capsules are developed as a result of complex interaction between the main nuclear structures; chromosomes, nucleoli, and nuclear membrane as it is manifested by the analysis of some recent ultrastructural date obtained in some insect and amphibian oocytes. The function of the karyosphere capsule and the role of the nuclear structure (sinaptonemal complex, extrachromosomal DNA, and nuclear membrane) in formation of the capsule, are discussed as well as the ultrastructural and cytochemical similarity between the karyosphere capsule of oocytes and nuclear bodies of somatic cells.  相似文献   

5.
6.
7.
M N Gruzova 《Ontogenez》1979,10(4):332-339
The fine structural organization of nuclei was studied in the growing oocytes of Blaps lethifera, B. mortisaga and Gnaptor spinimanus. In the beginning of diplotene the nuclei contain primary fibrillar nucleoli and numerous electron dense globules dispersed all over the nucleus; the loose chromosome material (lampbrush chromosomes) is distributed all over the nucleus. With the oocyte growth the chromosomes are spiralized and join into the karyosphere. A capsule of fibrous material forms around the karyosphere. The karyosphere nucleoli appear on the chromosomes and, then, move to the capsule region and outside its limits, to the nuclear envelope. They are fibrillar and non-active with respect to RNA synthesis. The fibrous material of the capsule is represented by strands which consist of bundles of cross-striated filaments. These latter contact directly with the chromosomes in the karyosphere and with the surface of the karyosphere nucleoli. The fibrillar-granular bodies are distributed along the strands in the capsule; they contain both RNA and DNA. The nature of extrachromosomal DNA in the karyosphere capsule and its participation in the formation of the capsule material are discussed. A suggestion is put forward on the similarity of the capsule strands with the modified central elements of synaptinemal complex.  相似文献   

8.
On the basis of light, autoradiographic (uridine-3H incorporation) and electron microscopic investigation changes of nuclear structures were examined during the oogenesis in Chrysopa perla L. — In early meiotic prophase the oocyte nuclei were found to contain a large body of extrachromosomal DNA. In certain cases the latter splits up into several DNA clumps giving rise to a few (4–7) primary nucleoli, 3–5 in diameter. The primary nucleoli consist of densely packed fibrils 50–100 Å thick. They contain no granular component and are inactive in RNA synthesis. — At the beginning of large growth the extrachromosomal DNA bodies disappear and numerous electron-dense clumps, 0,5–1 in diameter, appear in the nucleus. Instead of the primary nucleoli, the nucleus now contains a great number of ring nucleoli about 0,5–1 in diameter with a granular component (granules are 150 Å). The space between them is filled up with nucleolar strands running from the surface of the ring nucleoli. — At the stage ring nucleoli of uridine–3 H incorporation into the oocyte nucleus begins. — During later previtellogenesis and at the beginning of vitellogenesis the ring nucleoli disappear and the nucleus is filled with the network of nucleolar strands. Among them there are specific complexes. These consist of electron dense masses, of granular clusters (granules 500 Å in diameter) and large fibrillar electron light bodies. At this stage the nucleus takes the most active part in RNA synthesis. — The process of karyosphere capsule formation was studied by electron microscopy. The capsule was found to be of fibrillar nature; its structure is very peculiar and unlike any known membrane components of the cell. On the basis of cytochemical evidences the characteristics of the capsule are given. — The development of a powerful nucleolar apparatus based on the extrachromosomal DNA and a possible role of the synaptonemal complex and extrachromosomal DNA in formation of the karyosphere capsule is discussed.  相似文献   

9.
For identification and distribution of actin microfilaments in hand-isolated nuclei of R. temporaria oocytes (stage 6, according to Dumont, 1972) different methods were used: heavy meromyosin decoration, antiactin immunofluorescence with monoclonal antibodies, staining with rhodamine phalloidin, and electrophoresis in polyacrylamide gel. The nuclei of R. temporaria oocytes contain a considerable quantities of actin microfilaments which form intranuclear meshwork. Microfilaments are connected with the nucleoli, nucleolar RNP-complexes and nuclear envelope. Immunofluorescence with antiactin monoclonal antibodies reveals a strong staining of microfilaments and nucleoli. A slight staining of nucleoli is observed after the treatment of nuclei with rhodamine phalloidin. A specific role of intranuclear microfilaments in direct transport of nucleolar material from the nucleus into the oocyte cytoplasm, in stabilization of the karyosphere (the late diplotene oocyte complex of chromosomes with numerous nucleoli) is discussed in addition to its keeping in a definite region of the nucleus. A supposition is drawn on the functional significance of the connection between microfilaments and nuclear matrix. Based on our own and literature data, a conclusion is drawn, that the intranuclear filament actin may be one of the leading components in morpho-functional organization of the nucleus as the whole.  相似文献   

10.
11.
The structure and composition of the karyosphere (karyosome) capsule of the laboratory insect, Tribolium castaneum, were studied with the use of electron and immunoelectron microscopy. Eight stages that characterized the period of oocyte growth have been established basing on the study of nuclear structure dynamics. At the diplotene stage, T. castaneum oocyte chromosomes are being united early to form a compact karyosphere; however, prominent chromatin condensation does not occur at the same time. The process of karyosphere formation is accompanied by the development of a spacious extrachromosomal capsule surrounding chromatin. The capsule consists of a fibrous material of different morphological types. The most prominent molecular components of T. castaneum karyosphere capsule are represented by the proteins of nuclear matrix, including F-actin and lamin B. Apart from the structural proteins, immunocytochemical approach allowed revealing Sm proteins of small nuclear (sn) RNPs and “mature” snRNAs with 2,2,7-trimetyl guanosine (TMG) cap at the 5’-end of their molecules. These data may serve as a base for further broadening of the conception about the functions of the karyosphere capsule as a specialized oocyte nuclear domain. We believe that T. castaneum karyosphere capsule plays not only a structural role, but may be involved directly in the processes related to gene expression.  相似文献   

12.
In panoistic ovaries (without nurse cells) there are three predominating structures: lampbrush chromosomes, multiple nucleoli, and the hitherto undescribed endobody (Binnenkörper). Nucleoli are always multiple during the growth period of the oocyte of panoistic ovaries. This is true even in the case of Blattella which seems to possess only one big nucleolus, if examined in the light microscope (cf. Figs. 2 and 14b).—In the meroistic type of ovary (with nurse cells) the development of nucleoli and lampbrush chromosomes in the oocyte is very reduced. Only in the early growth stages of the oocyte the chromosomes despiralisize in a speciesspecific degree before they condense to a karyosphere (Pigs. 8, 9). On the other hand the endobody is bigger in the meroistic than in the panoistic ovary (Figs. 5, 8,14). — Lampbrush chromosomes and multiple nucleoli are sites of a very intensive RNA-synthesis (Fig. 1). The nucleoli are built up by granules measuring 125 Å in diameter (Figs. 15, 16). In the endobody, no RNA-metabolism could be demonstrated (Figs, 1a, b, 8c). The endobody is very homogeneous in electron microscope pictures and clearly distinct from the granular nucleoli (Fig. 17). The labelling pattern after incubation with 3H-amino acids suggests a permanent exchange of protein molecules between the karyoplasm and the endobody. — In the meroistic type of ovary the oocyte obtains RNA from the nurse cells, and RNA-synthesis in the oocyte nucleus is decreased in the same measure as its chromosomes are condensed. — The water-beetles Dytiscus and Acilius possess extra-DNA and deviate from the rule of restricted RNA-synthesis in the oocyte nucleus of the meroistic ovary albeit their chromosomes form a karyosphere too (Fig. 11) and RNA streams also from the nurse chamber into the ooplasm (Fig. 10). The extra-DNA resolves itselve into a network of fine fibrils no longer stainable by the Feulgen reaction. True multiple nucleoli develop on the fibrils suggesting the extra-DNA contains a huge mass of nucleolus organizers. The case of Dytiscus is very similar to the development of the multiple nucleoli in Gryllus.  相似文献   

13.
Changes in the nuclear structures and their participation in RNA synthesis in the growing oocytes were followed in two species of beetles Blaps lethifera and Gnaptor spinimanus. In the oocytes of both the species, the chromosomes join into the karyosphere following the short-term lampbrush stage. A large capsule appears around the karayosphere which consists of the fibrous substance, granules and karyosphere nucleoli. The latter form in the karyosphere and contain RNP but they are not true nucleoli since they do not include 3H-uridine. RNA synthesis on the chromosomes, active at the lampbrush stage, falls markedly following their joining into the karyosphere. The oocyte nuclei of these beetles are, thus, characterized by the absence of RNA synthesizing nucleolar system and, as compared with the trophocytes, by the low level of RNA synthesis on the chromosomes.  相似文献   

14.
The complex of chromosomes and nucleoli, constituting the karyosphere with a capsule, was removed micro-surgically from the late oocyte nuclei of Rana temporaria. Lipids of nuclei and of karyosphere were investigated using biochemical and autoradiographical methods in hormone-stimulated maturing oocytes in vitro. Neutral lipids (triglyceride, diglyceride, cholesterol ester) were found in the karyosphere substance by thin-layer chromatography. During oocyte maturation the incorporation of a precursor (3H-glycerol) into triglyceride was seen to increase much more than into lecithin. The autoradiography on the sectioned oocytes showed that the intranuclear level of 3H-glycerol was more densely distributed in the nucleolar zone over the material of a fibrous component of the karyosphere capsule. The level was also detected over the central part of the karyosphere in close proximity to the chromosomes. The involvement of lipids in organization of the complicated intranuclear complex of the karyosphere with a capsule is discussed. It is suggested that lipid accumulation in the area of the karyosphere fibrous component may reflect their functional relation with the oocyte nuclear matrix.  相似文献   

15.
We developed seven microsatellite loci in the common frog, Rana temporaria. There were between 2 and 27 alleles per locus and the expected heterozygosities ranged from 0.28 to 0.96 in a sample of frogs collected in the French Alps. Adding these seven markers to the 15 previously available microsatellite loci for this species should facilitate studies of genetic structure of Rana temporaria populations at a fine geographical scale.  相似文献   

16.
The ultrastructural organization of the vitellogenic oocyte nucleus (stage VI, according to Duryee, 1950) was studied in normal and in vitro hormone-stimulated maturing oocytes of Rana temporaria. At this stage, numerous nucleoli are gathered around the knot of highly contracted chromosomes (the karyosphere) thus making the karyosphere capsule. Light microscope observations reveal three zones in the capsule: a central fibrous zone separating the chromosomes from the nucleoli, a middle zone, consisting of numerous nucleoli and a distinct fibrous componen; in addition a fibrous zone on the capsule periphery is seen. The nucleoli are fibrillar, bear no proribosomal granules and do not synthesize RNA. This period is characterized by an intensive fragmentation and segregation of the nucleolar material. Numerous micronucleoli and nuclear bodies occur in the nucleus. The nucleoli are normally compound and irregular in shape to become spherical in hormone-stimulated maturing oocytes. In the central fibrous zone of the capsule, separating the chromosomes from the nucleoli, some peculiar abundant accumulations of annuli were detected lacking the membranes component. Annuli are linked with the fibrous material and are regularily packed making peculiar pseudomembranes (PMM). The chromatin is connected with PMM directly. In the middle zone of the capsule, accumulations of PMM are also seen, though less abundant and less regularly packed; along with annuli, membranous areas of various size and form are met in PMM. PMM are connected with the micronucleoli with filaments 20 nm thick. In the peripheral zone of the capsule, a variety of membranous structures is detected: intranuclear annuli lamellae, component of the capsule consists of different membranous and pseudomembranous (with annuli) structures. A question of the contribution of the chromatin material in the formation of the fibrous capsular component (PMM and membranous structures) is discussed.  相似文献   

17.
We investigated the role of constitutive morphology and previous experience in predator avoidance in two anuran species associated with different larval habitats. In Rana temporaria, deeper tails and larger body size conferred selective advantage against dragonfly predation. Previous experience with predators had a positive influence on the survival of R. temporaria tadpoles equivalent to predator selection. By contrast, survival in Bufo bufo seems unrelated to tail shape or experience. This suggests that B. bufo lacks constitutive morphological defenses against insect predators, and that morphological and behavioral defenses could result more effective than chemical deterrents for these insect predators. A key novelty of this study is the observation that Rana tadpoles having prior experience with predators have an enhanced success in further encounters, and this occurs before the morphological induced defense has been established. This induced modification for R. temporaria, and its lack of for B. bufo, may be an important determinant of larval survival.  相似文献   

18.
The organization of the nucleus in the oocytes of Rana ridibunda was examined during late diplotene at the light and electron microscopic level. At this stage the chromosomes are relatively condensed and assembled in the centre of the nucleus, constituting a karyosphere. The chromosomes here are associated with the central "protein sphere" (15--20 microns in diameter), obviously at their telomeres. Numerous nucleoli are accumulated around the chromosomes, forming a karyosphere capsule and contain segregated fibrillar and granular components; structures resembling perinucleolar chromatin and fibrillar bodies (spherules) are associated with the nucleoli. Granules 30 to 40 nm in diameter are seen to surround the fibrillar spherules. "Nucleolus-like bodies" consisting of granules 10 to 15 nm in diameter which are embedded in finely fibrillar material are often associated in contact with the chromosomes. The central sphere is an accumulation of annular structures similar to those of the pore complexes of the nuclear envelope. These structures are bound to the chromosome material, the "nucleolus-like bodies" and the fibrillar bodies. A participation of "nucleolus-like bodies" in the formation of the central sphere is suggested. A possible role of the nuclear protein matrix in the construction of the karyosphere elements is discussed.  相似文献   

19.
In Lake Glubokoe, the Amphibia are represented by five species. Two numerous species, Rana temporaria L. and Bufo bufo L., spawn in the lake and appear to be a significant component of its ecosystem. Thus, in autumn R. temporaria is a common food for predatory fish (pike, perch). During their wintering R. temporaria participate in the consumption of oxygen from the water. They may be a source of dangerous infections. Their tadpoles and those of B. bufo feed in the lake and annually remove substances from it. Adult R. temporaria in autumn, and the young of the year of R. temporaria and of B. bufo influence the population numbers of small littoral invertebrates. Several dozen pairs of Rana terrestris Andrzejw are observed to spawn regularly. Rana esculenta L. and Rana ridibunda Pallas are scarce. The influence of introducing a nature preserve on the numbers of Amphibia in Lake Glubokoe is discussed.  相似文献   

20.
Male meiosis in D. melanogaster cytologically follows the usual pattern, whereas in D. melanogaster and in D. virilis oocytes the chromosomes clump into a karyosphere at early meiotic prophase and remain so up to metaphase I.Male meiosis in D. virilis spermatocytes has an intermediate character: a part of the chromatin clumps together in a karyosphere at early prophase, whereas the other part of the chromatin remains diffuse all through prophase. At the end of prophase, the diffuse chromatin becomes integrated into the karyosphere before metaphase I. During the meiotic divisions the chromosomes have the same clumped aspect as those in Drosophila oocytes and thus differ strikingly from the dividing chromosomes in D. melanogaster spermatocytes.In D. virilis spermatocytes the nucleolus exhibits changes during the meiotic prophase that may be related to synthetical activities. The DNA specific staining with the fluorochrome DAPI reveals the existence of extrachromosomal DNA in the later prophase. Other striking differences in meiotic events between the two Drosophila species concern the centrioles and spermiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号