首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
We aimed to explore the mechanism of the KCNQ1OT1/miR‐760/PPP1R1B axis acting to regulate methotrexate (MTX) resistance of colorectal cancer (CRC). Differentially expressed mRNAs and lncRNAs in MTX‐sensitive CRC cell lines and MTX‐resistant cell lines were determined through microarray analysis. Application of bioinformatics analysis was aimed to uncover the relationships among the lncRNAs/miRNAs/mRNAs, and to demonstrate the effects of cAMP signalling pathway in MTX‐resistant CRC. The expression level of RNA and proteins was, respectively, detected using qRT‐PCR and Western blot assays, whereas the dual‐luciferase reporter gene assay was implemented to verify the targeted relationship. The influence of the lncRNA/miRNA/mRNA axis on biological functions of MTX‐resistant cells and on the growth of tumours determined through both vitro and vivo experiments. LncRNA KCNQ1OT1 and PPP1R1B mRNA were overexpressed in MTX‐resistant CRC tumour cells. KCNQ1OT1 functioned as a sponge of miR‐760, which targeted PPP1R1B. Knockdown of KCNQ1OT1 enhanced chemosensitivity towards MTX through the sponging of miR‐760. MiR‐760 expressed at low levels targeted PPP1R1B in the activated cAMP signalling pathway under MTX treatment. Knockdown of KCNQ1OT1 dampened the proliferation of MTX‐resistant (HT29/MTX) cells by regulating the miR‐760/PPP1R1B axis, which also induced cell cycle arrest together with apoptosis. KCNQ1OT1 regulated the expression of PPP1R1B and the downstream genes CREB and CBP in the cAMP signalling pathway. MTX showed a suppressive function on CRC progression. KCNQ1OT1 enhanced the MTX resistance of CRC cells by regulating miR‐760‐mediated PPP1R1B expression via the cAMP signalling pathway.  相似文献   

3.
The present study aimed to investigate the long noncoding RNAs (lncRNAs) and messenger RNAs (mRNAs) involved in the progression of gallbladder cancer and explore the potential physiopathologic mechanisms of gallbladder cancer in terms of competing endogenous RNAs (ceRNAs). The original lncRNA and mRNA expression profile data (nine gallbladder cancer tissues samples and nine normal gallbladder samples) in GSE76633 was downloaded from the Gene Expression Omnibus database. Differentially expressed mRNAs and lncRNAs between gallbladder cancer tissue and normal control were selected and the pathways in which they are involved were analyzed using bioinformatics analyses. MicroRNAs (miRNAs) were also predicted based on the differentially expressed mRNAs. Finally, the co-expression relation between lncRNA and mRNA was analyzed and the ceRNA network was constructed by combining the lncRNA-miRNA, miRNA-mRNA, and lncRNA-mRNA pairs. Overall, 373 significantly differentially expressed mRNAs and 47 lncRNAs were identified between cancer and normal tissue samples. The upregulated genes were significantly enriched in the extracellular matrix (ECM)-receptor interaction pathway, while the downregulated genes were involved in the complement and coagulation cascades. Altogether, 128 co-expression relations between lncRNA and mRNA were obtained. In addition, 196 miRNA-mRNA regulatory relations and 145 miRNA-lncRNA relation pairs were predicted. Finally, the lncRNA-miRNA-gene ceRNA network was constructed by combining the three types of relation pairs, such as XLOC_011309-miR-548c-3p-SPOCK1 and XLOC_012588-miR-765-CEACAM6. mRNAs and lncRNAs may be involved in gallbladder cancer progression via ECM-receptor interaction pathways and the complement and coagulation cascades. Moreover, ceRNAs such as XLOC_011309-miR-548c-3p-SPOCK1 and XLOC_012588-miR-765-CEACAM6 can also be implicated in the pathogenesis of gallbladder cancer.  相似文献   

4.
5.
Gastric cancer (GC) is a lethal disease, and among its variety of etiological factors, Helicobacter pylori (H. pylori) infection is the strongest risk factor. However, the genetic and molecular mechanisms underlying H. pylori-related GC need further elucidation. We investigated the competing endogenous RNA (ceRNA) network differences between H. pylori (+) and H. pylori (−) GC. The long noncoding RNA (lncRNA), microRNA (miRNA), and messenger RNA (mRNA) expression data from 32 adjacent noncancerous samples and 18 H. pylori (+) and 141 H. pylori (−) stomach adenocarcinoma samples were downloaded from the TCGA database. After construction of lncRNA–miRNA–mRNA ceRNA networks of H. pylori (+) and H. pylori (−) GC, Panther and Kobas databases were used to analyze the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Finally, survival analysis was used to discover the key genes. In H. pylori (+) GC, we identified a total of 1,419 lncRNAs, 82 miRNAs, and 2,501 mRNAs with differentially expressed profiles. In H. pylori (−) GC, 2,225 lncRNAs, 130 miRNAs, and 3,146 mRNAs were differentially expressed. Furthermore, three unique pathways (cytokine–cytokine receptor interaction, HIF-1 signaling pathway, and Wnt signaling pathway) were enriched in H. pylori (+) GC. According to the overall survival analysis, three lncRNAs (AP002478.1, LINC00111, and LINC00313) and two mRNAs (MYB and COL1A1) functioned as prognostic biomarkers for patients with H. pylori (+) GC. In conclusion, our study has identified the differences in ceRNA regulatory networks between H. pylori (+) and H. pylori (−) GC and provides a rich candidate reservoir for future studies.  相似文献   

6.
7.
8.
9.
The incidence of hypoxic pulmonary hypertension (HPH) is increasing. Accumulating evidence suggests that long noncoding RNAs (lncRNAs) play an important role in HPH, but the functions and mechanism have yet to be fully elucidated. In the present study, we established a HPH rat model with 8 h of hypoxia exposure (10% O2) per day for 21 days. High-throughput sequencing identified 60 differentially expressed (DE) lncRNAs, 20 DE miRNAs and 695 DE mRNAs in rat lung tissue. qRT-PCR verified the accuracy of the results. The DE mRNAs were significantly enriched in immune response, inflammatory response, leukocyte migration, cell cycle, cellular response to interleukin-1, IL-17 signalling pathway, cytokine–cytokine receptor interaction and Toll-like receptor signalling pathway. According to the theory of competing endogenous RNA (ceRNA) networks, lncRNA–miRNA–mRNA network was constructed by Cytoscape software, 16 miRNAs and 144 mRNAs. The results suggested that seven DE lncRNAs (Ly6l, AABR07038849.2, AABR07069008.2, AABR07064873.1, AABR07001382.1, AABR07068161.1 and AABR07060341.2) may serve as molecular sponges of the corresponding miRNAs and play a major role in HPH.  相似文献   

10.
This study aims to reveal the regulatory mechanism of lncRNAs–miRNAs–mRNAs network during the proliferative phase of liver regeneration (LR). High-throughput sequencing technology was performed, and a total of 1,738 differentially expressed lncRNAs (DE lncRNAs), 167 known differentially expressed miRNAs (DE miRNAs), and 2,727 differentially expressed mRNAs were identified. Then, the target DE lncRNAs and DE mRNAs regulated by the same miRNAs were screened and a ceRNA regulatory network containing 32 miRNAs, 107 lncRNAs, and 270 mRNAs was constructed. Insulin signaling pathway, pyrimidine metabolism, axon guidance, carbohydrate digestion and absorption, and pyruvate metabolism were significantly enriched in the network. Through literature review and the regulatory relationship between lncRNAs and miRNAs, nine core lncRNAs were identified, which might play important roles during the proliferative phase of rat LR. This study analyzed lncRNA–miRNA–mRNA regulatory network for the first time during the proliferative phase of rat LR, providing clues for exploring the mechanism of LR and the treatment of liver diseases.  相似文献   

11.
12.

Introduction

In addition to the well-known short noncoding RNAs such as microRNAs (miRNAs), increasing evidence suggests that long noncoding RNAs (lncRNAs) act as key regulators in a wide aspect of biologic processes. Dysregulated expression of lncRNAs has been demonstrated being implicated in a variety of human diseases. However, little is known regarding the role of lncRNAs with regards to intervertebral disc degeneration (IDD). In the present study we aimed to determine whether lncRNAs are differentially expressed in IDD.

Methods

An lncRNA-mRNA microarray analysis of human nucleus pulposus (NP) was employed. Bioinformatics prediction was also applied to delineate the functional roles of the differentially expressed lncRNAs. Several lncRNAs and mRNAs were chosen for quantitative real-time PCR (qRT-PCR) validation.

Results

Microarray data profiling indicated that 116 lncRNAs (67 up and 49 down) and 260 mRNAs were highly differentially expressed with an absolute fold change greater than ten. Moreover, 1,052 lncRNAs and 1,314 mRNAs were differentially expressed in the same direction in at least four of the five degenerative samples with fold change greater than two. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis for the differentially expressed mRNAs indicated a number of pathways, such as extracellular matrix (ECM)-receptor interaction. A coding-noncoding gene co-expression (CNC) network was constructed for the ten most significantly changed lncRNAs. Annotation terms of the coexpressed mRNAs were related to several known degenerative alterations, such as chondrocyte differentiation. Moreover, lncRNAs belonging to a particular subgroup were identified. Functional annotation for the corresponding nearby coding genes showed that these lncRNAs were mainly associated with cell migration and phosphorylation. Interestingly, we found that Fas-associated protein factor-1 (FAF1), which potentiates the Fas-mediated apoptosis and its nearby enhancer-like lncRNA RP11-296A18.3, were highly expressed in the degenerative discs. Subsequent qRT-PCR results confirmed the changes.

Conclusions

This is the first study to demonstrate that aberrantly expressed lncRNAs play a role in the development of IDD. Our study noted that up-regulated RP11-296A18.3 highly likely induced the over-expression of FAF1, which eventually promoted the aberrant apoptosis of disc cells. Such findings further broaden the understanding of the etiology of IDD.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-014-0465-5) contains supplementary material, which is available to authorized users.  相似文献   

13.
14.
This study aimed to identify significant biomarkers related to the prognosis of liver cancer using long noncoding RNA (lncRNA)-associated competing endogenous RNAs (ceRNAs) analysis. Differentially expressed mRNA and lncRNAs between liver cancer and paracancerous tissues were screened, and the functions of these mRNAs were predicted by gene ontology and pathway enrichment analyses. A ceRNA network consisting of differentially expressed mRNAs and lncRNAs was constructed. LncRNA FENDRR and lncRNA HAND2-AS1 were hub nodes in the ceRNA network. A risk score assessment model consisting of eight genes (PDE2A, ESR1, FBLN5, ALDH8A1, AKR1D1, EHHADH, ADRA1A, and GNE) associated with prognosis were developed. Multivariate Cox regression suggested that both pathologic_T and risk group could be regarded as independent prognostic factors. Furthermore, a nomogram model consisting of pathologic_T and risk group showed a good prediction ability for predicting the survival rate of liver cancer patients. The nomogram model consisting of pathologic_T and a risk score assessment model could be regarded as an independent factor for predicting prognosis of liver cancer.  相似文献   

15.
16.
17.
Growing evidence has revealed that long noncoding RNAs (lncRNAs) have an important impact on tumorigenesis and tumor progression via a mechanism involving competing endogenous RNAs (ceRNAs). However, their use in predicting the survival of a patient with hepatocellular carcinoma (HCC) remains unclear. The aim of this study was to develop a novel lncRNA expression–based risk score system to accurately predict the survival of patients with HCC. In our study, using expression profiles downloaded from The Cancer Genome Atlas database, the differentially expressed messenger RNAs (mRNAs), lncRNAs, and microRNAs (miRNAs) were explored in patients with HCC and normal liver tissues, and then a ceRNA network constructed. A risk score system was established between lncRNA expression of the ceRNA network and overall survival (OS) or recurrence-free survival (RFS); it was further analyzed for associations with the clinical features of patients with HCC. In HCC, 473 differentially expressed lncRNAs, 63 differentially expressed miRNAs, and 1417 differentially expressed mRNAs were detected. The ceRNA network comprised 41 lncRNA nodes, 12 miRNA nodes, 24 mRNA nodes, and 172 edges. The lncRNA expression–based risk score system for OS was constructed based on six lncRNAs (MYLK-AS1, AL359878.1, PART1, TSPEAR-AS1, C10orf91, and LINC00501), while the risk score system for RFS was based on four lncRNAs (WARS2-IT1, AL359878.1, AL357060.1, and PART1). Univariate and multivariate Cox analyses showed the risk score systems for OS or RFS were significant independent factors adjusted for clinical factors. Receiver operating characteristic curve analysis showed the area under the curve for the risk score system was 0.704 for OS, and 0.71 for RFS. Our result revealed a lncRNA expression–based risk score system for OS or RFS can effectively predict the survival of patients with HCC and aid in good clinical decision-making.  相似文献   

18.
19.
20.
Uncontrolled proliferation is the hallmark of cancer cells. Previous studies mainly focused on the role of protein-coding genes in cancer cell proliferation. Emerging evidence showed that long non-coding RNAs (lncRNAs) also play critical roles in cancer cell proliferation and growth. LncRNA KCNQ1OT1 is found to contribute to carcinogenesis, but its role in acute promyelocytic leukemia (APL) is unclear. In this study, by analyzing data from Gene Expression Omnibus, The Cancer Genome Atlas database and our clinical samples, we found that KCNQ1OT1 was selectively highly expressed in APL. Functional assays demonstrated that knockdown of KCNQ1OT1 reduced APL cell proliferation and increased apoptosis. Further evidence showed that KCNQ1OT1 was mainly located in the cytoplasm of APL patient-derived NB4 cells and APL patient bone marrow samples. Mechanistically, KCNQ1OT1 bound to RNA binding protein FUS, and silencing either KCNQ1OT1 or FUS reduced the expression level and stability of MAP3K1 mRNA. Whereas KCNQ1OT1 and FUS did not affect each other. Importantly, knockdown of MAP3K1 impaired APL cell proliferation. Finally, c-Myc transactivated KCNQ1OT1 in APL cells through binding to its promoter while knockdown of c-Myc decreased KCNQ1OT1 expression. Our results not only revealed that c-Myc transactivated KCNQ1OT1 and upregulated KCNQ1OT1 promoted APL cell proliferation, but also demonstrated that KCNQ1OT1 bound to FUS to synergistically stabilize MAP3K1 mRNA, thus facilitating APL cell proliferation. This study established a previously unidentified role of KCNQ1OT1 in the development of APL, and KCNQ1OT1 may serve as a potential therapeutic target for APL.Subject terms: Acute myeloid leukaemia, Acute myeloid leukaemia  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号