首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Vinculin is a highly conserved protein involved in cell proliferation, migration, and adhesion. However, the effects of vinculin on gastric cancer (GC) remain unclear. Therefore, we aimed to explore the functional role of vinculin in GC, as well as its underlying mechanism. Expression of vinculin in patients with GC was analyzed by real-time polymerase chain reaction, Western blot analysis, and immunohistochemistry. Overall survival was evaluated by the Kaplan-Meier method with the log-rank test. The relationship between vinculin and clinicopathological characteristics of patients with GC was further identified. In addition, we assessed the expression of vinculin in GC cell lines. Besides, vinculin was suppressed or overexpressed by transfection with small interfering (si-vinculin) or pcDNA-vinculin and then cell viability, cell apoptosis, and/or migration was respectively examined by the 3-(4, 5-dimethylthiazole-2-yl)-2, 5-biphenyl tetrazolium bromide assay, flow cytometer, and scratch assay, respectively. Moreover, the cell cycle- and apoptosis-related proteins were detected by Western blot analysis. The expression of vinculin was significantly increased in the GC tissues and cells compared with the nontumor tissues or cells. Vinculin protein positive staining was mainly located in the cell membrane and cytoplasm. Moreover, vinculin was significantly associated with Tumor Node Metastasis (TNM) and poor differentiation. Patients with high vinculin levels had significantly worse overall survival than those with low levels. Suppression of vinculin significantly decreased cell viability and migration and promoted cell apoptosis. However, overexpression of vinculin statistically increased cell viability but had no effects on cell apoptosis. Vinculin promotes GC proliferation and migration and predicts poor prognosis in patients with GC.  相似文献   

2.
Previously, we found that sperm-associated antigen 5 (SPAG5) was upregulated in pelvic lymph node metastasis–positive cervical cancer. The aim of this study is to examine the role of SPAG5 in the proliferation and tumorigenicity of cervical cancer and its clinical significance in tumor progression. In our study, SPAG5 expression in cervical cancer patients was detected using quantitative real-time polymerase chain reaction, western blotting, and immunohistochemistry; cervical cancer cell function with downregulated SPAG5 in vitro was explored using tetrazolium assay, flow cytometry, and colony formation and Transwell assays. SPAG5 was upregulated in tumor tissue compared with paired adjacent noncancerous tissues; SPAG5 upregulation in tumor tissues indicated poor disease-free survival, which was also an independent prognostic indicator for cervical cancer patients. In vitro study demonstrated that SPAG5 downregulation inhibited cell proliferation and growth significantly by G2/M arrest and induction of apoptosis, and hindered cell migration and invasion. Under SPAG5 downregulation, the sensitivity of cervical cancer cells differed according to taxol dose, which correlated with mammalian target of rapamycin (mTOR) signaling pathway activity. In general, SPAG5 upregulation relates to poor prognosis in cervical cancer patients, and SPAG5 is a regulator of mTOR activity during taxol treatment in cervical cancer.  相似文献   

3.
Accumulating research works have reported that long noncoding RNAs (lncRNAs) are involved in various cancers, including cervical cancer. LncRNA DGCR5 has been identified in many cancers. However, the biological role of DGCR5 in cervical cancer remains barely known. We aimed to investigate the biological function of DGCR5 in cervical cancer progression. Here, in our current study, we observed that DGCR5 was downregulated in human cervical cancer cell lines (MS751, SiHa, HeLa, and HT-3) compared with the primary normal cervical squamous cells (NCSC1 and NCSC2). Then, DGCR5 was restrained by transfection with lenti-virus-short hairpin RNA (LV-shRNA) while induced by LV-DGCR5 in HeLa and C33A cells. Silence of DGCR5 obviously induced cervical cancer cell viability and cell proliferation. Reversely, upregulation of DGCR5 inhibited HeLa and C33A cell survival and proliferation. Furthermore, silencing of DGCR5 increased cervical cancer cell colony formation ability and decreased cell apoptosis, whereas its overexpression exhibited an opposite process. Moreover, DGCR5 suppressed migration and invasion capacity of cervical cancer cells. The Wnt signaling is integral in numerous biological processes. Here, we found that Wnt signaling was strongly activated in cervical cancer cells. Downregulation of DGCR5 contributed to cervical cancer progression by activating Wnt signaling. Subsequently, in vivo animal models were used to confirm that DGCR5 suppressed cervical cancer via targeting Wnt signaling. In conclusion, we reported that DGCR5 was involved in cervical cancer progression via modulating the Wnt pathway.  相似文献   

4.
5.
Plastin-3 plays a key role in cancer cell proliferation and invasion, but its prognostic value in pancreatic cancer (PACA) remains poorly defined. In this study, we show that PLS3 messenger RNA is overexpressed in PACA tissue compared with normal tissue. We accumulated 207 cases of PACA specimens to perform immunohistochemical analysis and demonstrated that PLS3 levels correlate with T-classification (p < .001) and pathology (p < .001). Furthermore, overall survival rates (p < .001) in tumors with high PLS3 expression were poor, as assessed through Kaplan–Meier survival analysis. PLS3 was found to be an independent prognostic factor for PACA through multivariate Cox regression analysis. Moreover, we found that PLS3 enhances the proliferation and invasion of tumor cells as assessed through Cell Counting Kit-8, wounding healing assays, and Transwell assays. The upregulation of PLS3 also led to enhanced phosphatidylinositol-3 kinase/protein kinase B signaling in PACA cells. These data suggest that PLS3 is a biomarker to estimate PACA progression and represents a molecular target for PACA therapy.  相似文献   

6.
7.
Pseudogenes play a crucial role in cancer progression. However, the role of pituitary tumour‐transforming 3, pseudogene (PTTG3P) in gastric cancer (GC) remains unknown. Here, we showed that PTTG3P expression was abnormally up‐regulated in GC tissues compared with that in normal tissues both in our 198 cases of clinical samples and the cohort from The Cancer Genome Atlas (TCGA) database. High PTTG3P expression was correlated with increased tumour size and enhanced tumour invasiveness and served as an independent negative prognostic predictor. Moreover, up‐regulation of PTTG3P in GC cells stimulated cell proliferation, migration and invasion both in vitro in cell experiments and in vivo in nude mouse models, and the pseudogene functioned independently of its parent genes. Overall, these results reveal that PTTG3P is a novel prognostic biomarker with independent oncogenic functions in GC.  相似文献   

8.
9.
Cervical cancer is the most common cause of female cancer-related mortality worldwide. Decreased expression of long noncoding RNA growth arrest-specific 5 (GAS5) is found in human cervical cancer tissues and associated with poor prognosis. However, the studies on associations between GAS5 level and malignant phenotypes, as well as sensitivity to chemotherapeutic drug in cervical cancer cells are limited. In this study, overexpression of GAS5 in cervical cancer cells resulted in prohibited cell proliferation and colony formation, which were promoted by siGAS5. Enhanced GAS5 increased cell percentage in the G0/G1 phase and decreased cells percentage in the S phase, whereas reduced expression did not. The malignant behaviors of cervical cancer cells, manifested by cell migration and invasion, could be weakened by the GAS5 overexpression and enhanced by siGAS5. Furthermore, in cisplatin-induced cell, overexpression of GAS5 reduced cells viability and enhanced apoptosis, whereas in cells transfected with siGAS5, apoptosis eliminated. We have reported the upregulation of microRNA-21 (miR-21) and its oncogenetic roles in cervical cancer previously. In this study, we found the negative relationship between the GAS5 and miR-21. Moreover, the decrease of miR-21 associated proteins phosphorylated STAT3 and E2F3 was seen in GAS5 overexpressed cells, both of which could be increased by siGAS5. The GAS5 deficiency also reduced miR-21 target proteins TIMP3 and PDCD4 expressions. Taken together, the GAS5 expression level is inversely associated with malignancy, but positively associated with sensitivity to cisplatin-induced apoptosis, suggesting that GAS5 could be a biomarker of cisplatin-resistance in clinical therapy of human cervical cancer.  相似文献   

10.
In this study, we aimed to investigate the effects of lncRNA CASC11 on gastric cancer (GC) cell progression through regulating miR-340-5p and cell cycle pathway. Expressions of lncRNA CASC11 in gastric cancer tissues and cell lines were determined by qRT-PCR. Differentially expressed lncRNAs, mRNAs and miRNAs were screened through microarray analysis. The relationship among CASC11, CDK1 and miR-340-5p was predicted by TargetScan and validated through dual luciferase reporter assay. Western blot assay examined the protein level of CDK1 and several cell cycle regulatory proteins. GO functional analysis and KEGG pathway analysis were used to predict the association between functions and related pathways. Cell proliferation was determined by CCK-8 assays. Cell apoptosis and cell cycle were detected by flow cytometry assay. CASC11 was highly expressed in GC tissues and cell lines. Knockdown of CASC11 inhibited GC cell proliferation, promoted cell apoptosis and blocked cell cycle. KEGG further indicated an enriched cell cycle pathway involving CDK1. QRT-PCR showed that miR-340-5p was down-regulated in GC cells tissues, while CDK1 was up-regulated. Furthermore, CASC11 acted as a sponge of miR-340-5p which directly targeted CDK1. Meanwhile, miR-340-5p overexpression promoted GC cell apoptosis and induced cell cycle arrest, while CDK1 overexpression inhibited cell apoptosis and accelerated cell cycle. Our study revealed the mechanism of CASC11/miR-340-5p/CDK1 network in GC cell line, and suggested that CASC11 was a novel facilitator that exerted a biological effect by activating the cell cycle signaling pathway. This finding provides a potential therapeutic target for GC.  相似文献   

11.
A novel antisense lncRNA NT5E was identified in a previous microarray that was clearly up‐regulated in pancreatic cancer (PC) tissues. However, its biological function remains unclear. Thus, we aimed to explore its function and clinical significance in PC. The lncNT5E expression was determined in PC specimens and cell lines. In vitro and in vivo studies detected the impact of lncNT5E depletion on PC cell proliferation, migration and invasion. Western blotting investigated the epithelial‐mesenchymal transition (EMT) markers. The interaction between lncNT5E and the promoter region of SYNCRIP was detected by dual‐luciferase reporter assay. The role of lncNT5E in modulating SYNCRIP was investigated in vitro. Our results showed that lncNT5E was significantly up‐regulated in PC tissues and cell lines and associated with poor prognosis. LncNT5E depletion inhibited PC cell proliferation, migration, invasion and EMT in vitro and caused tumorigenesis arrest in vivo. Furthermore, SYNCRIP knockdown had effects similar to those of lncNT5E depletion. A significant positive relationship was observed between lncNT5E and SYNCRIP. Moreover, the dual‐luciferase reporter assays indicated that lncNT5E depletion significantly inhibited SYNCRIP promoter activity. Importantly, the malignant phenotypes of lncNT5E depletion were rescued by overexpressing SYNCRIP. In conclusion, lncNT5E predicts poor prognosis and promotes PC progression by modulating SYNCRIP expression.  相似文献   

12.
13.
Opa-interacting protein 5 antisense RNA 1 (OIP5-AS1) is a long intergenic noncoding RNA, which has been suggested to be dysregulated in human cancers and served as tumor suppressor or promoter depending on tumor types. However, the role of OIP5-AS1 in bladder cancer was still unknown. In our study, OIP5-AS1 was overexpressed in bladder cancer, and associated with clinical progression and short overall survival. The loss-of-function studies suggested downregulation of OIP5-AS1 expression decreased cell viability, induced cell-cycle arrest and promoted cell apoptosis in bladder cancer. There was a positive association between OIP5-AS1 expression and OIP5 expression in bladder cancer tissues. Moreover, downregulation of OIP5-AS1 expression reduced messenger RNA and protein levels of OIP5 in bladder cancer cell lines. In conclusion, OIP5-AS1 is a useful biomarker for predicting clinical progression and poor prognosis and promotes cell proliferation through modulating OIP5 expression.  相似文献   

14.
MARCH5 is a crucial regulator of mitochondrial fission. However, the expression and function of MARCH5 in ovarian cancer have not been determined. This study investigated the expression and function of MARCH5 in ovarian cancer with respect to its potential role in the tumorigenesis of the disease as well as its usefulness as an early diagnostic marker. We found that the expression of MARCH5 was substantially upregulated in ovarian cancer tissue in comparison with the normal control. Silencing MARCH5 in SKOV3 cells decreased TGFB1-induced cell macroautophagy/autophagy, migration, and invasion in vitro and in vivo, whereas the ectopic expression of MARCH5 in A2780 cells had the opposite effect. Mechanistic investigations revealed that MARCH5 RNA may function as a competing endogenous RNA (ceRNA) to regulate the expression of SMAD2 and ATG5 by competing for MIR30A. Knocking down SMAD2 or ATG5 can block the effect of MARCH5 in A2780 cells. Also, silencing the expression of MARCH5 in SKOV3 cells can inhibit the TGFB1-SMAD2/3 pathway. In contrast, the ectopic expression of MARCH5 in A2780 cells can activate the TGFB1-SMAD2/3 pathway. In turn, the TGFB1-SMAD2/3 pathway can regulate MARCH5 and ATG5 through MIR30A. Overall, the results of this study identified MARCH5 as a candidate oncogene in ovarian cancer and a potential target for ovarian cancer therapy.  相似文献   

15.
p53R2 is a p53-inducible ribonucleotide reductase subunit involved in deoxyribonucleotide biosynthesis and DNA repair. Although p53R2 has been linked to human cancer, its role in cervical cancer remains unknown. In this study, we investigated the expression and clinical significance of p53R2 in early-stage cervical cancer. p53R2 expression is significantly upregulated at both mRNA and protein levels in cervical cancer cells and tissues, compared with that in matched normal cervical cells and tissues, respectively. p53R2 overexpression is associated with increased risk of pelvic lymph node metastasis (PLNM, p = 0.001) and cancer relapse (p = 0.009). Patients with high p53R2 expression have a shorter overall survival (OS) and disease-free survival (DFS). p53R2 is an independent factor for predicting OS and DFS of cervical cancer patients. We further show that p53R2 is important for oncogenic growth, migration and invasion in cervical cancer cells. Mechanistically, p53R2 promotes Akt signaling and epithelial–mesenchymal transition (EMT). In conclusion, our study demonstrates for the first time that p53R2 protein is overexpressed in early-stage cervical cancer and unravels some unconventional oncogenic functions of p53R2. p53R2 may be a useful prognostic biomarker and therapeutic target for cervical cancer.  相似文献   

16.
The decreased expression of tumour suppressor candidate 3 (TUSC3) is associated with proliferation in several types of cancer, leading to an unfavourable prognosis. The present study aimed to assess the cellular and molecular function of TUSC3 in patients with cervical squamous cell carcinoma (CSCC). Levels of mRNA expressions of TUSC3 were analysed in CSCC tissues and six cell lines using qRT‐PCR. Immunohistochemistry(IHC) was used to evaluate the protein expression level of TUSC3 in four paired specimens, 220 paraffin‐embedded CSCC specimens and 60 cases of normal cervical tissues(NCTs), respectively. Short hairpin RNA interference was employed for TUSC3 knockdown. Cell proliferation, migration and invasion were evaluated using growth curve, MTT assay, wound healing, transwell assay and xenograft tumour model, respectively. The results demonstrated that TUSC3 mRNA and protein expression levels were downregulated in CSCC samples. Multivariate and univariate analyses indicated that TUSC3 was an independent prognostic factor for patients with CSCC. Decreased TUSC3 expression levels were significantly associated with proliferation and an aggressive phenotype of cervical cancer cells both in vitro and in vivo. Moreover, the knockdown of TUSC3 promoted migration and invasion of cancer cells, while the increased expression of TUSC3 exhibited the opposite effects. The downregulation of TUSC3 facilitated proliferation and invasion of CSCC cells through the activation of the AKT signalling pathway. Our data demonstrated that the downregulation of TUSC3 promoted CSCC cell metastasis via the AKT signalling pathway. Therefore, TUSC3 may serve as a novel prognostic marker and potential target for CSCC.  相似文献   

17.
Cervical cancer (CC) is one of the most prevalent cancers in women in the world. However, the pathogenesis is still very unclear, and the current screening methods are too expensive. Emerging evidence shows that miR-1266 has great influence on tumor cell migration and invasion. In order to clarify the role of miR-1266 in CC, we collected serum from CC, high-grade squamous intraepithelial lesion (HSIL), low-grade squamous intraepithelial lesion (LSIL) and normal control (NC), collected tissues from CC and control group (CG), and followed up 50 CC patients. We used HeLa and SiHa cells to clarify the roles of miR-1266 on cell proliferation, migration and invasion. The CC mouse model was conducted to prove the role of miR-1266 on tumorigenesis. qRT-PCR was used to measure the expressions of miR-1266 and DAB2IP mRNA. Western blot was used to determine the expression of DAB2IP protein. Cell counting kit-8 proliferation assay (CCK-8), Colony formation assay, Wound-healing assay and Transwell invasion assay were used to determine the cell survival, proliferative, migrative and invasive abilities. Our study found that miR-1266 had a rising trend in serum from NC to LSIL to HSIL to CC, and increased in CC tissues. High expression serum miR-1266 had lower overall survival rates than patients with miR-1266 low expression. MiR-1266 promoted cell viability, proliferation, migration and invasion by targeting DAB2IP. And miR-1266 could promote tumorigenesis in vivo. In conclusion, miR-1266 could be used as a new biomarker for diagnosis, prediction and treatment of CC in the future.  相似文献   

18.
LIM and SH3 protein 2 (LASP2) belongs to nebulin family. It has been proven that LASP2 is involved in several cancers; however, its role in cervical cancer is unclear. Herein, we showed that LASP2 was highly expressed in cervical cancer tissues and cell lines. To knockdown LASP2 in cervical cancer cells, small interfering RNAs (siRNAs) targeting LASP2 (si-LASP2) were used. We found that cell proliferation, migration/invasion were markedly reduced after si-LASP2 transfection. A significant increase in E-cadherin expression, and decrease in N-cadherin and vimentin expressions were observed in si-LASP2 transfected cervical cancer cells. Knockdown of LASP2 caused significant inhibitory effect on the PI3K/Akt pathway. Treatment with the activator of the PI3K/Akt pathway, 740Y-P, abolished the effects of si-LASP2 transfection on cervical cancer cells. These findings suggested that LASP2 may be an oncogene through regulating the PI3K/Akt pathway in cervical cancer.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号