首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Pre-eclampsia (PE), whose pathophysiology and etiology remain undefined, represents a leading consequence of fetal and maternal mortality and morbidity. Oxidative stress (OS) is recognized to involve in this disorder. In this study, we hypothesized that neural cell adhesion molecule 1 (NCAM1) gene silencing would suppress the OS in the pregnancy complicated by PE. Initially, clinical samples were collected for determination of NCAM1 expression in placental tissues and levels of OS products in blood. To assess the regulatory mechanism of NCAM1 knockdown on OS, we used small interfering RNA (siRNA) to silence NCAM1 expression in human umbilical vein endothelial cells (HUVECs). Next, cells were treated with or without hypoxia/reoxygenation to observe the level changes of OS products and p38 mitogen-activated protein kinase (p38MAPK) pathway-related genes. Finally, an evaluation of HUVEC migration and invasion abilities was conducted by wound-healing and transwell assays. Placenta of pregnancy with PE presented significantly increased NCAM1 expression in comparison to placenta of normal pregnancy. Meanwhile, enhanced OS in blood of pregnant women with PE was observed relative to women with normal pregnancy. siRNA-mediated knockdown of NCAM1 gene could inhibit the p38MAPK signaling pathway, repress OS, and promote cell migration and invasion in HUVECs, indicating that NCAM1 inhibition could reduce the influence of PE. Importantly, blocking the p38MAPK signaling pathway reversed the inhibitory role of NCAM1 gene silencing on PE. Collectively, this study defines potential role of NCAM1 gene silencing as a therapeutic target in PE through inhibiting OS and enhancing HUVEC migration and invasion by disrupting the p38MAPK signaling pathway.  相似文献   

3.
MicroRNA-17-5p (miR-17-5p) and epithelial-mesenchymal transition (EMT) have been reported to participate in the development and progression of multiple cancers. However, the relationship between the miR-17-5p and EMT in osteosarcoma (OS) is still poorly understood. This study was to investigate the effects of the miR-17-5p and its potential mechanism in regulating proliferation, apoptosis, and EMT of human OS. Quantitative real-time PCR was used to detect the miR-17-5p and SRC kinase signaling inhibitor 1 (SRCIN1) messenger RNA expression in OS specimens and cell lines. After transfection with miR-17-5p inhibitors, proliferation, apoptosis, migration, and invasion of OS cells were assessed by using the Cell Counting Kit-8, the annexin V-FITC apoptosis, wound-healing, and transwell assays. The SRCIN1 was validated as a target of the miR-17-5p through bioinformatics algorithms and luciferase reporter assay. Moreover, the expression of EMT markers, E-cadherin, N-cadherin, and Snail was identified by the Western blot analysis. MiR-17-5p was significantly upregulated in OS tumor samples and cell lines. It inhibited proliferation and EMT, and promoted apoptosis in OS. The SRCIN1 was identified as a direct target of the miR-17-5p. Silenced miR-17-5p could change the expression of EMT markers, such as upregulating the expression of E-cadherin, and downregulating the expression of N-cadherin and Snail through targeting the antioncogenic SRCIN1. These findings suggest that the miR-17-5p promotes cell proliferation, and EMT in human OS by directly targeting the SRCIN1, and reveal a branch of the miR-17-5p/SRCIN1/EMT signaling pathway involved in the progression of OS.  相似文献   

4.
Osteosarcoma (OS) is the most frequent type of cancer that starts in the bones, with a rather high tendency to metastasize to other bones at the early stages. Although many types of research have demonstrated that long noncoding RNAs commonly take part in the development of various cancers, the modulating mechanism of LEF1-AS1 in OS was unknown yet. In this study, our results disclosed that LEF1-AS1, as well as LEF1, had higher expression levels in OS cells than that in normal bone cells. LEF1-AS1 knockdown dramatically inhibited the proliferation, migration, as well as invasion in OS, which proved that LEF1-AS1 contributed to the growth of OS. Furthermore, HNRNPL knockdown suppressed the expression of LEF1. LEF1-AS1 was confirmed to sponge HNRNPL and HNRNPL could bind with LEF1. Both LEF1-AS1 and HNRNPL could enhance the stability of LEF1 mRNA. LEF1-AS1 acted as a promoter in stimulating the Wnt signaling pathway in OS. In rescue experiments, overexpression of LEF1 partially offset the inhibition LEF1-AS1 knockdown brought in the proliferation, migration as well as invasion of OS cells. Collectively, this study had investigated that LEF1-AS1 bound with HNRNPL to promote OS cell proliferation, migration as well as invasion by enhancing the messenger RNA stability of LEF1.  相似文献   

5.
Neurokinin-1 receptor (NK1R) occurs naturally on human glioblastomas. Its activation mediates glioma cell proliferation. However, it is unknown whether NK1R is directly involved in tumor cell migration. In this study, we found human hemokinin-1 (hHK-1), via NK1R, dose-dependently promoted the migration of U-251 and U-87 cells. In addition, we showed that hHK-1 enhanced the activity of MMP-2 and the expression of MMP-2 and MT1-matrix metalloproteinase (MMP), which were responsible for cell migration, because neutralizing the MMPs with antibodies decreased cell migration. The involved mechanisms were then investigated. In U-251, hHK-1 induced significant calcium efflux; phospholipase C inhibitor U-73122 reduced the calcium mobilization, the up-regulation of MMP-2 and MT1-MMP, and the cell migration induced by hHK-1, which meant the migration effect of NK1R was mainly mediated through the Gq-PLC pathway. We further demonstrated that hHK-1 boosted rapid phosphorylation of ERK, JNK, and Akt; inhibition of ERK and Akt effectively reduced MMP-2 induction by hHK-1. Meanwhile, inhibition of ERK, JNK, and Akt reduced the MT1-MMP induction. hHK-1 stimulated significant phosphorylation of p65 and c-JUN in U-251. Reporter gene assays indicated hHK-1 enhanced both AP-1 and NF-κB activity; inhibition of ERK, JNK, and Akt dose-dependently suppressed the NF-κB activity; only the inhibition of ERK significantly suppressed the AP-1 activity. Treatment with specific inhibitors for AP-1 or NF-κB strongly blocked the MMP up-regulation by hHK-1. Taken together, our data suggested NK1R was a potential regulator of human glioma cell migration by the up-regulation of MMP-2 and MT1-MMP.  相似文献   

6.
7.
8.
MicroRNAs (miRNAs, miR) are of critical importance in growth and metastasis of cancer cells; however, the underlying functions of miRNAs in osteosarcoma (OS) remain largely unknown. This study was aimed to elucidate the role of miR-221 in regulating the biological behavior of OS cells. The proliferation ability was examined by cell counting kit-8 (CCK-8) and cell cycle assay. The abilities of cell migration, invasion, and apoptosis were monitored by transwell assay and flow cytometry, respectively. The effect of miR-221 on cyclin-dependent kinase inhibitor 1B (CDKN1B) expression was evaluated by luciferase assays, real-time polymerase chain reaction, and Western blot analysis. We found that miR-221 was elevated in OS cell lines compared with the normal osteoblastic cell line. Transfection of the miR-221 inhibitor into MG63 and U-2OS cell lines obviously suppressed cell proliferation, migration, and invasion, which is accompanied with cell cycle arrest in G0/G1 phase. Furthermore, luciferase reporter assays indicated that CDKN1B is directly targeted by miR-221 in OS cells. Knockdown of CDKN1B inhibited the effects of miR-221 inhibitor, along with decreased Bax and caspase-3 and increased cyclin E, cyclin D1, Bcl-2, Snail, and Twist1 expression. The results suggested that miR-221 might act as a potentially useful target for treatment of OS.  相似文献   

9.
Integrin-linked kinase (ILK) is an ankyrin repeat-containing serine-threonine protein kinase that is involved in the regulation of integrin-mediated processes such as cancer cell proliferation, migration and invasion. In this study, we examined the effect of a lentivirus-mediated knockdown of ILK on the proliferation, migration and invasion of pancreatic cancer (Panc-1) cells. Immunohistochemical staining showed that ILK expression was enhanced in pancreatic cancer tissue. The silencing of ILK in human Panc-1 cells led to cell cycle arrest in the G0/G1 phase and delayed cell proliferation, in addition to down-regulating cell migration and invasion. The latter effects were mediated by up-regulating the expression of E-cadherin, a key protein in cell adhesion. These findings indicate that ILK may be a new diagnostic marker for pancreatic cancer and that silencing ILK could be a potentially useful therapeutic approach for treating pancreatic cancer.  相似文献   

10.
目的:明确FAP 是否通过RhoA/ROCK、Rac1-GTP 通路发挥促增殖、侵袭和迁移作用。方法:用MTT 实验,Transwell 实验 和迁移实验检测FAP、RhoA/ROCK、Rac1-GTP 对卵巢癌细胞系HO-8910PM 的增殖,侵袭和迁移的影响。结果:1、MTT 法,迁移和 侵袭实验证实用Y-27632 抑制RhoA/ROCK 途径能够促进卵巢癌细胞的增殖、迁移和侵袭,与FAP 联合作用时促进作用增强。 2、MTT 法, 迁移和侵袭实验证实NSC23766 抑制Rac1 途径能够抑制卵巢癌细胞的增殖、迁移和侵袭,与FAP 联合作用使FAP 的 促进作用减弱。结论:1、RhoA/ROCK 通路抑制HO-8910PM 细胞增殖、迁移和侵袭;Rac1-GTP 促进HO-8910PM 细胞增殖、迁移 和侵袭。2、FAP不是通过RhoA/ROCK而是通过Rac1-GTP 信号通路在HO-8910PM细胞发挥促增殖、迁移和侵袭作用的。  相似文献   

11.
Gastric cancer (GC) is a common heterogeneous disease. The critical roles of microRNA-340 (miR-340) in the development and progression of GC were emphasized in accumulating studies. This study aims to examine the regulatory mechanism of miR-340 in GC cellular processes. Initially, microarray technology was used to identify differentially expressed genes and regulatory miRs in GC. After that, the potential role of miR-340 in GC was determined via ectopic expression, depletion, and reporter assay experiments. Expression of secreted phosphoprotein 1 (SPP1), miR-340, phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway, and epithelial–mesenchymal transition (EMT)-related genes was measured. Moreover, to further explore the function of miR-340 in vivo and in vitro, proliferation, apoptosis, migration, invasion, and tumorigenic capacity were evaluated. SPP1 was a target gene of miR-340 which could then mediate the PI3K/AKT signaling pathway by targeting SPP1 in GC. Furthermore, miR-340 levels were reduced and SPP1 was enriched in GC tissues and cells, with the PI3K/AKT signaling pathway being activated. Inhibitory effects of upregulated miR-340 on SPP1 and the PI3K/AKT signaling pathway were confirmed in vivo and in vitro. Overexpression of miR-340 or the silencing of SPP1 inhibited GC cell proliferation, invasion, migration, and EMT process, but promoted apoptosis of GC cells. Typically, targeting of SPP1 by miR-340 may contribute to the inhibition of proliferation, migration, invasion, and EMT of GC cells via suppression of PI3K/AKT signaling pathway.  相似文献   

12.
Epidermal growth factor (EGF) activation of the EGF receptor (EGFR) is an important mediator of cell migration, and aberrant signaling via this system promotes a number of malignancies including ovarian cancer. We have identified the cell surface glycoprotein CDCP1 as a key regulator of EGF/EGFR-induced cell migration. We show that signaling via EGF/EGFR induces migration of ovarian cancer Caov3 and OVCA420 cells with concomitant up-regulation of CDCP1 mRNA and protein. Consistent with a role in cell migration CDCP1 relocates from cell-cell junctions to punctate structures on filopodia after activation of EGFR. Significantly, disruption of CDCP1 either by silencing or the use of a function blocking antibody efficiently reduces EGF/EGFR-induced cell migration of Caov3 and OVCA420 cells. We also show that up-regulation of CDCP1 is inhibited by pharmacological agents blocking ERK but not Src signaling, indicating that the RAS/RAF/MEK/ERK pathway is required downstream of EGF/EGFR to induce increased expression of CDCP1. Our immunohistochemical analysis of benign, primary, and metastatic serous epithelial ovarian tumors demonstrates that CDCP1 is expressed during progression of this cancer. These data highlight a novel role for CDCP1 in EGF/EGFR-induced cell migration and indicate that targeting of CDCP1 may be a rational approach to inhibit progression of cancers driven by EGFR signaling including those resistant to anti-EGFR drugs because of activating mutations in the RAS/RAF/MEK/ERK pathway.  相似文献   

13.
Gastric cancer (GC) is the fourth largest cancer in the world, with a 5-year survival rate of <30%. Thus, this study intends to investigate the effects of inhibin βA (INHBA) gene silencing on the migration and invasion of GC cells via the transforming growth factor-β (TGF-β) signaling pathway. Initially, this study determined the expression of INHBA and the TGF-β signaling pathway-related genes in GC tissues. After that, to assess the effect of INHBA silencing on GC progression, GC cells were transfected with short hairpin RNAs that targeted INHBA in order to detect the expression of INHBA and the TGF-β signaling pathway-related genes, as well as cell migration, invasion, and proliferation abilities. Finally, a tumor xenograft model in nude mice was constructed to verify the effect that the silencing of INHBA had on tumor growth. Highly expressed INHBA and activated TGF-β signaling pathways were observed in GC tissues. In response to shINHBA-1 and shINHBA-2, the TGF-β signaling pathway was inhibited in GC cells, whereas the GC cell migration, invasion, proliferation, and tumor growth were significantly dampened. On the basis of the observations and findings of this study, INHBA gene silencing inhibited the progression of GC by inactivating the TGF-β signaling pathway, which provides a potential target in the treatment of GC.  相似文献   

14.
15.
Objectives:Osteosarcoma (OS) is one of the two most common malignant bone tumors among children and teens but it is still a rare disorder. Semaphorin 4D (Sema4D) has been reported to play a specific role in human cancers. The aim of this study was to explore the function of Sema4D in the tumorigenesis and development of OS.Methods:10 pairs of OS tissues and paracancerous normal tissues from human OS samples and OS cell lines were used. Western blot assay was performed to detect the protein expression of Sema4D, Plexin-B1, and associated proteins of Pyk2-PI3K/AKT pathway. To explore the effect of Sema4D in the progression of OS, we reduced the expression of Sema4D. The effect of Sema4D knockdown on cell proliferation was explored by CCK-8 assay and clone formation assay. The effect of Sema4D knockdown on cell migration and invasion was assessed by Transwell assay.Results:Sema4D was overexpressed in OS tissues and cell lines. Sema4D knockdown notably suppressed cell proliferation in OS cells. Cell migration and invasion were reduced by Sema4D knockdown. Sema4D/Plexin-B1 facilitated OS, progression by promoting Pyk2-PI3K/AKT pathway.Conclusion:Sema4D/Plexin-B1 promoted the development of OS so Sema4D might be a potential target of treatment for patients with OS.  相似文献   

16.
17.
18.
Gliomas take a number of different genetic routes in the progression to glioblastoma multiforme, a highly invasive variant that is mostly unresponsive to current therapies. The alpha-chemokine stromal cell-derived factor (SDF)-1 alpha binds to the seven transmembrane G-protein-coupled CXCR-4 receptor and acts to modulate cell migration and proliferation by activating multiple signal transduction pathways. Leucine-rich repeats containing 4 (LRRC4), a putative glioma suppressive gene, inhibits glioblastoma cells tumorigenesis in vivo and cell proliferation and invasion in vitro. We also previously demonstrated that LRRC4 controlled glioblastoma cells proliferation by ERK/AKT/NF-kappa B signaling pathway. In the present study, we demonstrate that CXC chemokine receptor 4 (CXCR4) is expressed in human glioblastoma U251 cell line, and that SDF-1 alpha increases the proliferation, chemotaxis, and invasion in CXCR4+ glioblastoma U251 cells through the activation of ERK1/2 and Akt. The reintroduction of LRRC4 in U251 cells inhibits the expression of CXCR4 and SDF-1 alpha/CXCR4 axis-mediated downstream intracellular pathways such as ERK1/2 and Akt leading to proliferate, chemotactic and invasive effects. Furthermore, we provide evidence for proMMP-2 activation involvement in the SDF-1 alpha/CXCR4 axis-mediated signaling pathway. LRRC4 significantly inhibits proMMP-2 activation by SDF-1 alpha/CXCR4 axis-mediated ERK1/2 and Akt signaling pathway. Collectively, these results suggest a possible important "cross-talk" between LRRC4 and SDF-1 alpha/CXCR4 axis-mediated intracellular pathways that can link signals of cell proliferation, chemotaxis and invasion in glioblastoma, and may represent a new target for development of new therapeutic strategies in glioma.  相似文献   

19.
Osteosarcoma (OS) is the most common primary malignant bone tumor. Recently, increasing evidence has shown that the long noncoding RNA (lncRNA) DLX6-AS1 (distal-less homeobox 6 antisense 1) plays significant roles in various types of cancers. However, the functions and underlying mechanisms of DLX6-AS1 have not been explored in OS yet. In this study, we assessed the expression of DLX6-AS1 in OS tissues and cell lines and explored the underlying molecular mechanisms. DLX6-AS1 was found to be significantly upregulated in OS tissues and OS cell lines. High expression of DLX6-AS1 was significantly correlated with advanced TNM stage, high tumor grade, and distant metastasis of patients with OS. Knockdown of DLX6-AS1 suppressed OS cell proliferation, invasion, and migration, and induced cell apoptosis. Knockdown of DLX6-AS1 also suppressed in vivo tumor growth. Bioinformatics and luciferase assay analysis showed that DLX6-AS1 functioned as a competing endogenous RNA (ceRNA) to negatively regulate miR-641 expression. Furthermore, miR-641 was found to target the 3′ untranslated region of homeobox protein Hox-A9 (HOXA9) and suppressed the expression of HOXA9. Mechanistic studies showed that DLX6-AS1 regulated OS cell proliferation, invasion, and migration via regulating HOXA9 by acting as a ceRNA for miR-641. Our results suggested that DLX6-AS1 functions as a ceRNA by targeting miR-641/HOXA9 signal pathway to suppress OS cell proliferation and metastasis. Our study may provide novel insights into understanding pathogenesis and development of OS.  相似文献   

20.

Background

Chondrosarcoma is a type of highly malignant tumor with a potent capacity of local invasion and distant metastasis. The effect of endothelin-1 (ET-1) on migration activity in human chondrosarcoma cells is not clearly understood. Here, we found that ET-1 increased the migration and expression of cyclooxygenase (COX)-2 in human chondrosarcoma cells.

Methods

ET-1-mediated COX-2 expression was assessed by qPCR and Western blot analysis. The mechanisms of action of ET-1 in different signaling pathways were studied using Western blotting. Knockdown of proteins was achieved by transfection with siRNA. Chromatin immunoprecipitation assays were used to study in vivo binding of c-Jun to the COX-2 promoter.

Results

Human chondrosarcoma tissues had significant expression levels of ET-1 and COX-2, which were higher than that in normal cartilage. Exogenous ET-1 increased cell migration and the expression of COX-2. In addition, COX-2 protein levels and cell migration ability were abolished by ET receptor antagonists. Activation of the mitogen-activated protein kinase (MAPK) and activator protein-1 (AP-1) pathways after ET-1 treatment was demonstrated, and ET-1-induced COX-2 expression and cell migration activity were inhibited by the specific inhibitor and mutant of MAPK and AP-1 cascades. ET-1 increased the binding of c-Jun to the AP-1 element on the COX-2 promoter. Furthermore, knockdown of ET-1 decreased cell metastasis in vitro and in vivo.

Conclusions

Our results indicated that ET-1 enhances the cell migration of chondrosarcoma by increasing COX-2 expression through the ET receptors, MAPK, and AP-1 signal transduction pathway.

General significance

We link high ET-1 and COX-2 expression to chondrosarcoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号