首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atherosclerosis and osteoporosis are the leading causes of mortality and morbidity in the World. Recent epidemiologic studies have demonstrated that these disease processes develop in parallel. Evidence indicates that hyperlipidemia plays a paradoxical role in both disease processes. However, the mechanism is not understood. This prospectus hypothesizes the role of lipids activate atherosclerosis within the bone and the heart to initiate the development of diseases in both of these tissues. The Prospectus on the Lrp 5/6 receptors provides a foundation for the mechanisms involved in the Lrp5/6 mediated disease biology. The LDL-Density-Pressure theory: the Role of Lrp5/6 provides a biological and a hemodynamic approach towards understanding the development of valvular heart disease and the implications in the field of bone molecular biology. This prospectus will review the current literature, provide a basis for the development of valve disease and indicate future therapeutic pathways for this disease process in the future.  相似文献   

2.
Lrp5 and Lrp6 redundantly control skeletal development in the mouse embryo   总被引:1,自引:0,他引:1  
The role of Wnt signaling in osteoblastogenesis in the embryo remains to be fully established. Although β-catenin, a multifunctional protein also mediating canonical Wnt signaling, is indispensable for embryonic osteoblast differentiation, the roles of the key Wnt co-receptors Lrp5 and Lrp6 are unclear. Indeed, global deletion of either Lrp5 or Lrp6 did not overtly affect osteoblast differentiation in the mouse embryo. Here, we generated mice lacking both receptors specifically in the embryonic mesenchyme and observed an absence of osteoblasts in the embryo. In addition, the double-deficient embryos developed supernumerary cartilage elements in the zeugopod, revealing an important role for mesenchymal Lrp5/6 signaling in limb patterning. Importantly, the phenotypes of the Lrp5/6 mutant closely resembled those of the β-catenin-deficient embryos. These phenotypes are likely independent of any effect on the adherens junction, as deletion of α-catenin, another component of the complex, did not cause similar defects. Thus, Lrp5 and 6 redundantly control embryonic skeletal development, likely through β-catenin signaling.  相似文献   

3.
Low-density lipoprotein receptor-related proteins 5 and 6 (Lrp5 and Lrp6) are co-receptors of Wnt ligands and play important roles in Wnt/β-catenin signal transduction. Mice homozygous for a germline deletion of Lrp6 die at birth with several associated defects, while Lrp5-deficient mice are viable. Here, we conditionally deleted Lrp5 and/or Lrp6 in the mouse gut ((gut-/-)) by crossing mice carrying floxed alleles of Lrp5 and Lrp6 to a strain expressing Cre recombinase from the villin promoter (villin-Cre). The changes in morphology, differentiation, and Wnt signal transduction were validated using immunohistochemistry and other staining. Consistent with observations in mice carrying a homozygous germline deletion in Lrp5, intestinal development in Lrp5(gut-/-) mice was normal. In addition, mice homozygous for villin-Cre-induced deletion of Lrp6 (Lrp6(gut-/-)) were viable with apparently normal intestinal differentiation and function. However, mice homozygous for villin-Cre inactivated alleles of both genes (Lrp5(gut-/-) ; Lrp6(gut-/-)) died within 1 day of birth. Analysis of embryonic Lrp5(gut-/-); Lrp6(gut-/-) intestinal epithelium showed a progressive loss of cells, an absence of proliferation, and a premature differentiation of crypt stem/precursor cells; no notable change in differentiation was observed in the embryos lacking either gene alone. Further immunohistochemical studies showed that expression of the Wnt/β-catenin target, cyclin D1, was specifically reduced in the intestinal epithelium of Lrp5(gut-/-); Lrp6(gut-/-) embryos. Our data demonstrate that Lrp5 and Lrp6 play redundant roles in intestinal epithelium development, and that Lrp5/6 might regulate intestinal stem/precursor cell maintenance by regulating Wnt/β-catenin signaling.  相似文献   

4.
Calcific aortic valve disease (CAVD) is the most common indication for valve surgery in the USA. This study hypothesizes that CAVD develops secondary to Wnt3a/Lrp5 activation via oxidative‐mechanical stress in eNOS null mice. eNOS?/? mice were tested with experimental diets including a control (n = 20), cholesterol (n = 20), cholesterol + Atorvastatin (n = 20). After 23 weeks the mice were tested for the development of aortic stenosis by Echo, Histology, MicroCT, and RTPCR for bone markers. In vitro studies measured Wnt3a secretion from aortic valve endothelial cells and confirmed oxidative stress via eNOS activity. Anion exchange chromatography was performed to isolate the mitogenic protein. Myofibroblast cells were tested to induce bone formation. Cholesterol treated eNOS mice develop severe stenosis with an increase in Wnt3a, Lrp5, Runx2 (threefold increase (P < 0.0001) in the bicuspid versus tricuspid aortic valves. Secretion of Wnt3a from aortic valve endothelium in the presence of abnormal oxidative stress was correlated with diminished eNOS enzymatic activity and tissue nitrite levels. Initial characterization of the architecture for a stem cell nice was determined by protein isolation using anion‐exchange chromatography and cell proliferation via thymidine incorporation. Osteoblastogenesis in the myofibroblast cell occurred via Lrp5 receptor upregulation in the presence of osteogenic media. Targeting the Wnt3a/Lrp5 pathway in valve calcification and activation of osteogenesis is via an oxidative‐mechanical stress in CAVD. These findings provide a foundation for treating this disease process by targeting the cross talk mechanism in a resident stem cell niche. J. Cell. Biochem. 113: 1623–1634, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

5.
转化生长因子-β1(TGF-β1/Smads)信号转导通路的持续激活是瘢痕疙瘩形成的重要机制.研究发现这条通路重要的负反馈调节信号分子Smad7表达明显下调,Smad2/3的磷酸化水平和蛋白质量并无明显改变.但是,Smad7下调的机制尚不清楚.采用生物信息学方法对Smad7的启动子进行分析;用RT-PCR和蛋白质印迹分别检测了正常皮肤、正常瘢痕及瘢痕疙瘩组织中的Sp1样转录因子TIEG1mRNA及蛋白质的表达水平;体外培养正常皮肤、正常瘢痕及瘢痕疙瘩成纤维细胞,检测TIEG1 mRNA及蛋白的表达水平.研究结果显示,Smad7启动子上有Sp1的位点,TIEG1 mRNA及蛋白质水平在瘢痕疙瘩组织及瘢痕疙瘩成纤维细胞中表达明显高于正常瘢痕和正常皮肤(P<0.05).说明瘢痕疙瘩中TIEG1可能是Smad7下调的重要原因,有必要进一步研究TIEG1对Smad7的调控作用机制.  相似文献   

6.
Lrp5/6 co-receptor is known to play a role in bone formation and lipid metabolism. This gene encodes a member of the low-density lipoprotein (LDL) receptor gene family. This study tests the hypothesis that Lrp5/6 is necessary for the development of valve calcification in experimental hypercholesterolemia. Experimental hypercholesterolemia mouse models were tested: Lrp5(-/-) /ApoE(-/-):Lrp5(-/-) /ApoE(-/-) mice (n = 180). Group I (n = 60) normal diet, Group II (n = 60) 0.25% chol diet (w/w), and Group III (n = 60) 0.25% (w/w) chol diet + atorv for the development of calcification by MicroCT and Synchrotron MicroCT Scan and by Masson trichrome stain. Finally gene expression for Lrp5, Lrp6, and Runx2 PCR was performed to evaluate the expression in the control and the cholesterol valves. The ApoE(-/-) cholesterol treated mice developed calcification and increase in Lrp5, Runx2 (P < 0.05) as compared to control. The Lrp5(-/-) mice developed no calcification by MicroCT and Synchrotron and positive gene expression for Lrp5/6 or Runx2. The double knockout ApoE(-/-):Lrp5(-/-) developed mild mineralization in the cholesterol treated valves with an increase in Lrp6 and Runx2 expression(P < 0.05). There was no mineralization in the right sided hearts valves. In conclusion Lrp5/6 is necessary for calcification in the aortic valve in the presence of experimental hypercholesterolemia. These data demonstrate the first mouse genetic evidence for the LDL-Density-Pressure theory in cardiac valves.  相似文献   

7.
小鼠Lrp5基因启动子的克隆及功能分析   总被引:1,自引:3,他引:1  
为分析小鼠LDL受体相关蛋白 5 (Lrp5 )基因启动子的结构与功能 ,采用DNA重组技术 ,构建了 7种含小鼠Lrp5基因启动子荧光素酶报告基因表达体系 ,分别为 :pGL3 10 3(- 10 3bp~ + 132bp) ,pGL3 30 3(- 30 3bp~ + 132bp) ,pGL3 4 99(- 499bp~ + 132bp) ,pGL3 70 8(- 70 8bp~ + 132bp) ,pGL3 90 9(- 90 9bp~ + 132bp) ,pGL3 10 34(- 10 34bp~ + 132bp ) ,pGL3 12 2 9(- 12 2 9bp~ + 132bp) .以pRL TK为内参照质粒 ,瞬时转染成骨细胞株 (U2OS )及非成骨细胞株 (COS 7) ,收集细胞测定荧光素酶相对表达活性 .7种荧光素酶表达质粒在 2种细胞中表达无显著差异 ,即在所分析的小鼠Lrp5基因的 136 1bp(- 12 2 9bp~ + 132bp)范围内 ,不存在成骨细胞特异的表达元件 ;而且 7种表达质粒在 2种细胞中呈现相似的变化趋势 ,pGL3 10 3表达活性最高 ,pGL3 12 2 9表达活性显著降低 .表明小鼠Lrp5基因转录所必需的基本启动子序列在 - 10 3bp~ + 1bp范围内 ,- 10 34bp~ - 12 2 9bp之间的 195bp片段内可能含有负调控元件 .  相似文献   

8.
《Cell》2021,184(20):5163-5178.e24
  1. Download : Download high-res image (105KB)
  2. Download : Download full-size image
  相似文献   

9.
为研究小鼠低密度脂蛋白(LDL)受体相关蛋白5(LRP5)基因5′端调控序列的功能,PCR扩增小鼠Lrp5基因翻译起始位点上游3041bp(-2909bp~+132bp)DNA序列.PCR产物定向克隆到pGL3-basic载体上,重组质粒命名为pGL3-2909.以pGL3-2909质粒为模板,以不同的引物扩增出不同长短的DNA片段,分别定向克隆到含小鼠Lrp5基因基本启动子并含有荧光素酶报道基因的pGL3-103载体上,构建了12种荧光素酶报告基因表达体系:pGL3-267,pGL3-513,pGL3-535,pGL3-560,pGL3-575,pGL3-623,pGL3-645,pGL3-719,pGL3-770,pGL3-1032,pGL3-1330,pGL3-1619.以pRL-TK为内参照质粒,瞬时转染COS-7细胞,48h后收集细胞测定荧光素酶相对表达活性,pGL3-575(-2909bp~-2334bp)活性是pGL3-513(-2909bp~-2396bp)的20%,pGL3-535(-2909bp~-2374bp)的活性是pGL3-513的44%,pGL3-575的活性是pGL3-560(-2909bp~-2349bp)的48%,均有显著性差异.结果表明,在-2396bp与-2374bp之间的22bp区域内以及-2349bp与-2334bp之间的15bp区域内存在负调控元件.软件分析表明,此区域含有IK2,LYF1及MZF1调控元件.  相似文献   

10.
11.
12.
13.
An XWnt8-Fz5 fusion protein synergizes with LRP6 to potently activate beta-catenin-dependent signaling. Here, we generated a fusion in which XWnt8 was fused to the N-terminus of LRP6 and show it synergizes with both Fz4 and Fz5 to potently transactivate beta-catenin-dependent Wnt signaling. Based on this, we hypothesized that the main function of Wnt is to nucleate the formation of a physical complex between LRP6 and a Frizzled. Dkk1, but not the related Dkk3, binds LRP6 and inhibits canonical Wnt signaling by blocking the interaction of Wnt and LRP6. Therefore, we reasoned that a covalent fusion of Dkk1 to Fz5 (Dkk1-Fz5) would mimic Wnt ligand by nucleating the formation of a complex containing Fz5 and LRP6, while Dkk3 (Dkk3-Fz5) would not. We found that Dkk1-Fz5, but not Dkk3-Fz5, potently synergized with LRP6 to activate signaling in a dishevelled-dependent manner.  相似文献   

14.
The α5β1 integrin heterodimer regulates many processes that contribute to embryonic development and angiogenesis, in both physiological and pathological contexts. As one of the major adhesion complexes on endothelial cells, it plays a vital role in adhesion and migration along the extracellular matrix. We recently showed that angiogenesis is modulated by syntaxin 6, a Golgi- and endosome-localized t-SNARE, and that it does so by regulating the post-Golgi trafficking of VEGFR2. Here we show that syntaxin 6 is also required for α5β1 integrin-mediated adhesion of endothelial cells to, and migration along, fibronectin. We demonstrate that syntaxin 6 and α5β1 integrin colocalize in EEA1-containing early endosomes, and that functional inhibition of syntaxin 6 leads to misrouting of β1 integrin to the degradation pathway (late endosomes and lysosomes) rather transport along recycling pathway from early endosomes; an increase in the pool of ubiquitinylated α5 integrin and its lysosome-dependent degradation; reduced cell spreading on fibronectin; decreased Rac1 activation; and altered Rac1 localization. Collectively, our data show that functional syntaxin 6 is required for the regulation of α5β1-mediated endothelial cell movement on fibronectin. These syntaxin 6-regulated membrane trafficking events control outside-in signaling via haptotactic and chemotactic mechanisms.  相似文献   

15.
The remodeling of extracellular matrix is a crucial mechanism in tendon development and the proliferation of fibroblasts is a key factor in this process. The purpose of this study was to further elucidate the role of TIEG1 in mediating important tenocyte properties throughout the aging process. Wildtype and TIEG1 knockout tenocytes adhesion, spreading and proliferation were characterized on different substrates (fibronectin, collagen type I, gelatin and laminin) and the expression levels of various genes known to be involved with tendon development were analyzed by RT-PCR. The experiments revealed age-dependent and substrate-dependent properties for both wildtype and TIEG1 knockout tenocytes. Taken together, our results indicate an important role for TIEG1 in regulating tenocytes adhesion, spreading, and proliferation throughout the aging process. Understanding the basic mechanisms of TIEG1 in tenocytes may provide valuable information for treating multiple tendon disorders.  相似文献   

16.
C3H10T1/2多潜能干细胞成脂过程分为定向和分化两个阶段,骨形成蛋白4(BMP4)可以诱导其定向成前脂肪细胞.已有的研究表明,脂肪组织特异性敲除低密度脂蛋白受体相关蛋白1(Lrp1)的小鼠体重减轻,脂肪组织含量减少,揭示此基因对成脂具有重要作用.然而,目前尚不清楚Lrp1是否在成脂定向过程中发挥作用.采用小干扰RNA技术(RNAi),在体外水平研究低密度脂蛋白Lrp1对C3H10T1/2多潜能干细胞成脂定向的作用.分别在C3H10T1/2成脂的定向期和脂滴成熟期敲低Lrp1,通过显微镜下观察、油红O染色、Western blotting等实验证实,定向期而非脂滴成熟期敲低Lrp1显著抑制C3H10T1/2多潜能干细胞成脂.BMP4通过激活下游Smad1/5/8信号通路发挥作用,而敲低Lrp1显著抑制BMP4诱导的Smad1/5/8磷酸化.这些结果说明:敲低Lrp1通过下调Smad信号通路,抑制BMP4诱导的C3H10T1/2多潜能干细胞成脂定向.  相似文献   

17.
18.
Morphogens have been identified as guidance cues for postcrossing commissural axons in the spinal cord. Shh has a dual effect on postcrossing commissural axons: a direct repellent effect mediated by Hhip as a receptor, and an indirect effect by shaping a Wnt activity gradient. Wnts were shown to be attractants for postcrossing commissural axons in both chicken and mouse embryos. In mouse, the effects of Wnts on axon guidance were concluded to depend on the planar cell polarity (PCP) pathway. Canonical Wnt signaling was excluded based on the absence of axon guidance defects in mice lacking Lrp6 which is an obligatory coreceptor for Fzd in canonical Wnt signaling. In the loss‐of‐function studies reported here, we confirmed a role for the PCP pathway in postcrossing commissural axon guidance also in the chicken embryo. However, taking advantage of the precise temporal control of gene silencing provided by in ovo RNAi, we demonstrate that canonical Wnt signaling is also required for proper guidance of postcrossing commissural axons in the developing spinal cord. Thus, axon guidance does not seem to depend on any one of the classical Wnt signaling pathways but rather involve a network of Wnt receptors and downstream components. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 190–208, 2016  相似文献   

19.
Here, we present evidence that Lrp6, a coreceptor for Wnt ligands, is required for the normal formation of somites and bones. By positional cloning, we demonstrate that a novel spontaneous mutation ringelschwanz (rs) in the mouse is caused by a point mutation in Lrp6, leading to an amino acid substitution of tryptophan for the evolutionarily conserved residue arginine at codon 886 (R886W). We show that rs is a hypomorphic Lrp6 allele by a genetic complementation test with Lrp6-null mice, and that the mutated protein cannot efficiently transduce signals through the Wnt/beta-catenin pathway. Homozygous rs mice, many of which are remarkably viable, exhibit a combination of multiple Wnt-deficient phenotypes, including dysmorphologies of the axial skeleton, digits and the neural tube. The establishment of the anteroposterior somite compartments, the epithelialization of nascent somites, and the formation of segment borders are disturbed in rs mutants, leading to a characteristic form of vertebral malformations, similar to dysmorphologies in individuals suffering from spondylocostal dysostosis. Marker expression study suggests that Lrp6 is required for the crosstalk between the Wnt and notch-delta signaling pathways during somitogenesis. Furthermore, the Lrp6 dysfunction in rs leads to delayed ossification at birth and to a low bone mass phenotype in adults. Together, we propose that Lrp6 is one of the key genetic components for the pathogenesis of vertebral segmentation defects and of osteoporosis in humans.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号