首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclic strain-induced chondrocyte damage is actively involved in the pathogenesis of osteoarthritis and arthritis. MicroRNAs (miRNAs) carried by exosomes have been implicated in various diseases. However, the role of miR-100-5p in cyclic strain-induced chondrocyte damage remains to be elucidated. miR-100-5p and NADPH oxidase 4 (NOX4) were silenced or overexpressed in human primary articular chondrocytes. PKH-67 Dye was used to trace exosome endocytosis. Reactive oxygen species (ROS) production was monitored using DCFH-DA. Cell apoptosis was measured using a flow cytometer. Quantitative RT-PCR and Western blots were used to evaluate gene expression. Cyclic strain promoted ROS production and apoptosis in primary articular chondrocytes in a time-dependent manner. HucMSCs-derived exosomal miR-100-5p inhibited cyclic strain-induced ROS production and apoptosis in primary articular chondrocytes. miR-100-5p directly targeted NOX4. Overexpressing NOX4 attenuated hucMSCs-derived exosomes-mediated protective effects in primary articular chondrocytes. Cyclic strain promotes ROS production and apoptosis in primary articular chondrocytes, which was abolished by hucMSCs-derived exosomal miR-100-5p through its target NOX4. The findings highlight the importance of miR-100-5p/NOX4 axis in primary articular chondrocytes injury and provide new insights into therapeutic strategies for articular chondrocytes injury and osteoarthritis.  相似文献   

2.
microRNA (miR) has been shown to be involved in the treatment of diseases such as osteoarthritis (OA). This study aims to investigate the role of miR-206 in regulating insulin-like growth factor-1 (IGF-1) in chondrocyte autophagy and apoptosis in an OA rat model via the phosphoinositide 3-kinase (P13K)/protein kinase B (AKT)-mechanistic target of rapamycin (mTOR) signaling pathway. Wistar rats were used to establish the OA rat model, followed by the observation of histopathological changes, Mankin score, and the detection of IGF-1-positive expression and tissue apoptosis. The underlying regulatory mechanisms of miR-206 were analyzed in concert with treatment by an miR-206 mimic, an miR-206 inhibitor, or small interfering RNA against IGF-1 in chondrocytes isolated from OA rats. Then, the expression of miR-206, IGF-1, and related factors in the signaling pathway, cell cycle, and apoptosis, as well as inflammatory factors, were determined. Subsequently, chondrocyte proliferation, cell cycle distribution, apoptosis, autophagy, and autolysosome were measured. OA articular cartilage tissue exhibited a higher Mankin score, promoted cell apoptotic rate, increased expression of IGF-1, Beclin1, light chain 3 (LC3), Unc-51-like autophagy activating kinase 1 (ULK1), autophagy-related 5 (Atg5), caspase-3, and Bax, yet exhibited decreased expression of miR-206, P13K, AKT, mTOR, and Bcl-2. Besides, miR-206 downregulated the expression of IGF-1 and activated the P13K/AKT signaling pathway. Moreover, miR-206 overexpression and IGF-1 silencing inhibited the interleukins levels (IL-6, IL-17, and IL-18), cell apoptotic rate, the formation of autolysosome, and cell autophagy while promoting the expression of IL-1β and cell proliferation. The findings from our study provide a basis for the efficient treatment of OA by investigating the inhibitory effects of miR-206 on autophagy and apoptosis of articular cartilage in OA via activating the IGF-1-mediated PI3K/AKT-mTOR signaling pathway.  相似文献   

3.
摘要 目的:探讨circPPP1R12A(circ_0000423)调控p53信号通路对骨关节炎(osteoarthritis,OA)中软骨细胞增殖和凋亡的影响。方法:采用qRT-PCR检测circPPP1R12A在OA软骨细胞中的表达水平。在OA软骨细胞中分别转染oe-circPPP1R12A和sh-circPPP1R12A后,采用CCK-8检测细胞增殖情况;免疫荧光检测Ki-67阳性细胞表达率;流式细胞术检测细胞凋亡情况;qRT-PCR检测Ki-67和p53表达水平;Western Blot检测Cleaved-caspase3、P53、BCL-2和BAX的表达水平。结果:OA软骨细胞中circPPP1R12A的表达水平明显高于正常软骨细胞。过表达circPPP1R12A能够抑制OA软骨细胞增殖和促进细胞凋亡,通过上调p53表达激活p53信号通路,低表达circPPP1R12A能够促进OA软骨细胞增殖和抑制细胞凋亡,通过下调p53表达阻滞p53信号通路。在OA软骨细胞中同时低表达circPPP1R12A和过表达p53能够反转单独低表达circPPP1R12A对OA软骨细胞增殖和凋亡的影响。结论:circPPP1R12A在OA软骨细胞中明显高表达,circPPP1R12A能够通过激活p53信号通路抑制骨OA软骨细胞增殖和促进软骨细胞凋亡。circPPP1R12A可能成为OA治疗的干预靶点。  相似文献   

4.
5.
The hyperactivation of the mechanistic target of rapamycin complex 1 (mTORC1) in chondrocytes has been shown to accelerate the severity of destabilization of the medial meniscus-induced and age-related osteoarthritis (OA) phenotypes with aberrant chondrocyte hypertrophy and angiogenesis. Meanwhile, we previously reported that miR-483-5p is essential for the initiation and development of OA by stimulating chondrocyte hypertrophy and angiogenesis. The connection between mTORC1 and miR-483-5p activation in OA progression, however, remains unclear. In this study, we elucidated their relationship and identified the underlying mechanisms. The expression of miR-483-5p in the articular cartilage of cartilage-specific TSC1 knockout mice was assessed compared with control mice using the Agilent Mouse miRNA (8*60K) V19.0 array and real-time polymerase chain reaction (RT-PCR). The functional effects of the stimulation of miR-483-5p via histone deacetylase 4 (HDAC4) by mTORC1 in OA development, subsequently modulating its downstream targets matrilin 3 and tissue inhibitor of metalloproteinase 2, were examined by immunostaining, western blotting, and real-time PCR. This study revealed that miR-483-5p was responsible for mTORC1 activation-stimulated OA. Mechanistically, mTORC1 controls the HDAC4-dependent expression of miR-483-5p to stimulate chondrocyte hypertrophy, extracellular matrix degradation, and subchondral bone angiogenesis, and it consequently initiates and accelerates the development of OA. Our findings revealed a novel mTORC1-HDAC4-miR-483-5p pathway that is critical for OA development.  相似文献   

6.
Proinflammatory cytokine such as interleukin (IL)-1β causes inflammation of articular cartilage. In this current study, we explored the chondroprotective effects of long noncoding RNA (lncRNA) MALAT-1 on cell proliferation, apoptosis, and matrix metabolism in IL-1β-induced inflammation in articular chondrocytes. Articular chondrocytes from knee joints of normal rats were isolated and cultured, followed by identification through observation of toluidine blue and COL II immunocytochemical stainings. The proliferation of chondrocytes at passage 2 was detected by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. The inflammatory chondrocytes induced by 10 ng/mL IL-1β were observed and identified by toluidine blue and COL II immunocytochemical stainings. pcDNA 3.1 and pcDNA-MALAT-1 were transfected in the chondrocytes. Ultrastructure of chondrocytes was observed by using a transmission electron microscope. The MTT assay was carried out to evaluate chondrocyte viability. Hoechst 33258 staining and flow cytometry were adopted to assess chondrocyte apoptosis. The chondrocytes at passage 2 with the biological characteristics of chondrocytes were used for subsequent experiments. In IL-1β-treated chondrocytes, the growth rate of chondrocytes slowed down, the cells became narrow and long, the vacuoles were seen in the cells, and the morphology of the chondrocytes was irregular. The toluidine blue staining and the immunohistochemical staining of COL II became weaker. In response to IL-1β induction, articular chondrocytes showed reduced MALAT-1 expression; moreover, obvious cartilage injury was observed with decreased chondrocyte viability and Col II expression and elevated chondrocyte apoptosis, MMP-13 expression, and p-JNK expression. With the treatment of pcDNA-MALAT-1, the cartilage injury was alleviated with increased chondrocyte viability and type II collagen (Col II) expression and reduced chondrocyte apoptosis, MMP-13 expression and p-JNK expression. Taken together these results, lncRNA MALAT-1 blocked the activation of the JNK signaling pathway; thereby, IL-1β-induced inflammation in articular chondrocytes was reduced with enhanced chondrocyte proliferation and suppressed chondrocyte apoptosis and extracellular matrix degradation.  相似文献   

7.
Foci of chondrocyte hypertrophy that commonly develop in osteoarthritic (OA) cartilage can promote dysregulated matrix repair and pathologic calcification in OA. The closely related chemokines IL-8/CXCL8 and growth-related oncogene alpha (GROalpha)/CXCL1 and their receptors are up-regulated in OA cartilage chondrocytes. Because these chemokines regulate leukocyte activation through p38 mitogen-activated protein kinase signaling, a pathway implicated in chondrocyte hypertrophic differentiation, we tested whether IL-8 and GROalpha promote chondrocyte hypertrophy. We observed that normal human and bovine primary articular chondrocytes expressed both IL-8Rs (CXCR1, CXCR2). IL-8 and the selective CXCR2 ligand GROalpha (10 ng/ml) induced tissue inhibitor of metalloproteinase-3 expression, markers of hypertrophy (type X collagen and MMP-13 expression, alkaline phosphatase activity), as well as matrix calcification. IL-8 and the selective CXCR2 ligand GROalpha also induced increased transamidation activity of chondrocyte transglutaminases (TGs), enzymes up-regulated in chondrocyte hypertrophy that have the potential to modulate differentiation and calcification. Under these conditions, p38 mitogen-activated protein kinase pathway signaling mediated induction of both type X collagen and TG activity. Studies using mouse knee chondrocytes lacking one of the two known articular chondrocyte-expressed TG isoenzymes (TG2) demonstrated that TG2 was essential for murine GROalpha homologue KC-induced TG activity and critically mediated induction by KC of type X collagen, matrix metalloproteinase-13, alkaline phosphatase, and calcification. In conclusion, IL-8 and GROalpha induce articular chondrocyte hypertrophy and calcification through p38 and TG2. Our results suggest a novel linkage between inflammation and altered differentiation of articular chondrocytes. Furthermore, CXCR2 and TG2 may be sites for intervention in the pathogenesis of OA.  相似文献   

8.
Articular cartilage damage and chondrocyte apoptosis are common features of rheumatoid arthritis and osteoarthritis. Recently, curcumin has been reported to exhibit protective effects on degeneration in articular cartilage diseases. However, the effects and mechanisms of curcumin on articular chondrocyte injury remain to be elucidated. The aim of the present study is to investigate the chondroprotective mechanisms of curcumin on interleukin-1β (IL-1β)-induced chondrocyte apoptosis in vitro. The results revealed that IL-1β decreased cell viability and induced apoptosis in primary articular chondrocytes. Curcumin pretreatment reduced IL-1β-induced articular chondrocyte apoptosis. In addition, treatment with curcumin increased autophagy in articular chondrocytes and protected against IL-1β-induced apoptosis. The curcumin-mediated protection against IL-1β induced apoptosis was abolished when cells were treated with the autophagy inhibitor 3-methyladenine or transfected with Beclin-1 small interfering RNA. Furthermore, IL-1β stimulation significantly increased the phosphorylation levels of nuclear factor (NF)-κB p65 and glycogen synthase kinase-3β, and decreased the phosphorylation levels of β-catenin in articular chondrocytes, and these alterations to the phosphorylation levels were partly reversed by treatment with curcumin. Dual-luciferase and electrophoretic mobility shift assays demonstrated that IL-1β increased NF-κB p65 promoter activity in chondrocytes, and this was also reversed by curcumin. Pretreatment with the NF-κB inhibitor pyrrolidine dithiocarbamate enhanced the protective effects of curcumin on chondrocyte apoptosis, but Wnt/β-catenin inhibitor, XAV-939, did not exhibit this effect. Molecular docking and dynamic simulation studies results showed that curcumin could bound to RelA (p65) protein. These results indicate that curcumin may suppress IL-1β-induced chondrocyte apoptosis through activating autophagy and restraining NF-κB signaling pathway.  相似文献   

9.
MicroRNAs(miRNAs)通过与靶基因的相互作用发挥其生物学功能. miR-23b作为抑癌基因,参与了许多肿瘤和自身免疫疾病的发生过程,但其在糖尿病肾病中的作用尚不清楚.为了探讨miR-23b与靶基因TAB2/3作用对糖尿病肾病纤维化的影响,本实验通过建立糖尿病小鼠模型和糖尿病HK-2细胞模型,利用实时定量荧光PCR方法,检测糖尿病小鼠模型肾mRNA表达,发现miR-23b在糖尿病组(Dia组)表达低于正常组(P<0.001).利用Western印迹检测相关蛋白,结果显示,与正常组相比,TAB2/3,FN和α-SMA在糖尿病组高表达,并且TAB2/3在糖尿病组中持续高表达.利用基因转染技术过表达miR-23b可以同时在mRNA和蛋白水平上抑制TAB2/3,P38和ERK1/2的表达,FN表达也显著降低.以上结果显示:miR-23b可能通过作用靶基因TAB2/3及其信号通路下游,抑制糖尿病肾病纤维化.  相似文献   

10.
The multiligand receptor for advanced glycation end products (RAGE) mediates certain chronic vascular and neurologic degenerative diseases accompanied by low-grade inflammation. RAGE ligands include S100/calgranulins, a class of low-molecular-mass, calcium-binding polypeptides, several of which are chondrocyte expressed. Here, we tested the hypothesis that S100A11 and RAGE signaling modulate osteoarthritis (OA) pathogenesis by regulating a shift in chondrocyte differentiation to hypertrophy. We analyzed human cartilages and cultured human articular chondrocytes, and used recombinant human S100A11, soluble RAGE, and previously characterized RAGE-specific blocking Abs. Normal human knee cartilages demonstrated constitutive RAGE and S100A11 expression, and RAGE and S100A11 expression were up-regulated in OA cartilages studied by immunohistochemistry. CXCL8 and TNF-alpha induced S100A11 expression and release in cultured chondrocytes. Moreover, S100A11 induced cell size increase and expression of type X collagen consistent with chondrocyte hypertrophy in vitro. CXCL8-induced, IL-8-induced, and TNF-alpha-induced but not retinoic acid-induced chondrocyte hypertrophy were suppressed by treatment with soluble RAGE or RAGE-specific blocking Abs. Last, via transfection of dominant-negative RAGE and dominant-negative MAPK kinase 3, we demonstrated that S100A11-induced chondrocyte type X collagen expression was dependent on RAGE-mediated p38 MAPK pathway activation. We conclude that up-regulated chondrocyte expression of the RAGE ligand S100A11 in OA cartilage, and RAGE signaling through the p38 MAPK pathway, promote inflammation-associated chondrocyte hypertrophy. RAGE signaling thereby has the potential to contribute to the progression of OA.  相似文献   

11.
Multi-drug resistance is a major challenge to hepatocellular carcinoma (HCC) treatment, and the over-expression or deletion of microRNA (miRNA) expression is closely related to the drug-resistant properties of various cell lines. However, the underlying molecular mechanisms remain unclear. CCK-8, EdU, flow cytometry, and transmission electron microscopy were performed to determine cell viability, proliferation, apoptosis, autophagic flow, and nanoparticle characterization, respectively. In this study, the results showed that the expression of miR-26b was downregulated following doxorubicin treatment in human HCC tissues. An miR-26b mimic enhanced HCC cell doxorubicin sensitivity, except in the absence of p53 in Hep3B cells. Delivery of the proteasome inhibitor, MG132, reversed the inhibitory effect of miR-26b on the level of p53 following doxorubicin treatment. Tenovin-1 (an MDM2 inhibitor) protected p53 from ubiquitination-mediated degradation only in HepG2 cells with wild type p53. Tenovin-1 pretreatment enhanced HCC cell resistance to doxorubicin when transfected with an miR-26b mimic. Moreover, the miR-26b mimic inhibited doxorubicin-induced autophagy and the autophagy inducer, rapamycin, eliminated the differences in the drug sensitivity effect of miR-26b. In vivo, treatment with sp94dr/miR-26b mimic nanoparticles plus doxorubicin inhibited tumor growth. Our current data indicate that miR-26b enhances HCC cell sensitivity to doxorubicin through diminishing USP9X-mediated p53 de-ubiquitination caused by DNA damaging drugs and autophagy regulation. This miRNA-mediated pathway that modulates HCC will help develop novel therapeutic strategies.  相似文献   

12.
13.
《Genomics》2020,112(1):574-580
BackgroundlncUCA1 is abundantly expressed in the heart, indicating it may be important in maintaining normal myocardial function. However, the underlying mechanism of lncUCA1 in heart disease, particularly myocardial infarction (MI), is still in its infancy.MethodsLncUCA1 and miR-143 expression were measured in hearts of MI models. Overexpression and knockdown of lncUCA1 in neonatal rat cardiomyocytes were performed to confirm the effects of lncUCA1 in hypoxia-induced apoptosis.ResultsThe expression of lncUCA1 decreased but miR-143 increased inversely in MI heart. Overexpressing lncUCA1 protected cardiomyocytes from H/R induced apoptosis via inhibiting miR-143, which regulates apoptosis by targeting MDM2/p53 pathway. While silencing lncUCA1 caused miR-143 upregulation and H/R-induced apoptosis increase. Moreover, miR-143 was proved to be a competitive target of lncUCA1.ConclusionslncUCA1 might protect cardiomyocyte against H/R induced apoptosis by suppressing miR-143 and modulated the following downstream MDM2/p53 signaling pathway, indicating the therapeutic potential of targeting lncUCA1 for MI.  相似文献   

14.
This study was aimed to explore the role of miR‐29b‐3p and PGRN in chondrocyte apoptosis and the initiation and progress of osteoarthritis (OA). Both miR‐29b‐3p and PGRN were up‐regulated in cartilage tissue from patients with OA. Transfection of miR‐29b‐3p mimic into rat primary chondrocytes and SW1353 chondrosarcoma cells significantly suppressed PGRN expression and release, induced apoptosis, inhibited proliferation and scratch wound closure. By contrast, transfection of miR‐29b‐3p inhibitor exhibited the opposite effects. Moreover, the expression and secretion of cartilaginous degeneration‐related molecules were also altered by miR‐29b‐3p. Luciferase reporter gene assay showed rat GRN mRNA is directly targeted and repressed by miR‐29b‐3p. The fact that recombinant PGRN or shPGRN‐mediated PGRN interference abolished miR‐29b‐3p mimic‐induced cell apoptosis and growth inhibition suggested miR‐29b‐3p affect the cellular functions of chondrocyte through regulating PGRN expression. In vivo, joint cavity injection of miR‐29b‐3p antagomir prior to surgical induction of OA significantly suppressed the upregulation of miR‐29b‐3p, whereas further promoted the increased expression of PGRN. Articular chondrocytes apoptosis and cartilage loss in the knee joint of surgically induced OA rats were also ameliorated by the injection of miR‐29b‐3p antagomir, demonstrated by TUNEL and safranin O‐fast green staining. This work showed miR‐29b‐3p facilitates chondrocyte apoptosis and OA by targeting PGRN, and miR‐29b‐3p or PGRN may be the potential target for OA treatments.  相似文献   

15.
16.
Osteosarcoma (OS) is a primary malignant bone tumor with high morbidity. Developing new therapeutic approaches with neoadjuvant is of great interest in OS treatment. Reportedly, ataxia telangiectasia mutated (ATM)/ataxia telangiectasia and radiation resistance gene 3 related (ATR)-p53 signaling is considered as a critical DNA damage signaling pathway sensitizing cancer cells to chemotherapies; while wild-type p53-induced phosphatase 1 (WIP1), an oncogene overexpressed in diverse cancers, has been regarded as a critical inhibitor in the ATM/ATR-p53 DNA damage signaling pathway. Herein, the expression of WIP1 in OS tissues and cell lines was examined; to investigate the mechanism of WIP1 abnormal upregulation, online tools were used to predict the upstream regulatory microRNAs (miRNAs) targeting WIP1. Among the candidate miRNAs, the expression and detailed function of miR-590 were validated. Through binding to the 3′-untranslated region of WIP1, miR-590 inhibited WIP1 expression and, therefore, enhanced the effect of Dox on OS cell proliferation and apoptosis through downstream ATM-p53 signaling. Moreover, RELA could bind to the promoter region of miR-590 to inhibit its expression, thereby affecting downstream WIP1 and ATM-p53 signaling. The expression of p65 was upregulated in OS tissues, indicating that the effect of p65 inhibition on cell viability, apoptosis, and related mechanisms could be partially restored by miR-590 inhibition. Taken together, these results showed that p65-mediated miR-590/WIP1/ATM-p53 modulation might be a novel target to enhance the cellular effect of Dox on OS cell lines.  相似文献   

17.
Osteoarthritis is the most prevalent form of arthritis in the world and it is becoming a major public health problem. Osteoarthritic chondrocytes undergo morphological and biochemical changes that lead to de-differentiation. The involvement of signaling pathways, such as the Wnt pathway, during cartilage pathology has been reported. Wnt signaling regulates critical biological processes. Wnt signals are transduced through at least three intracellular signaling pathways including the canonical Wnt/β-catenin pathway, the Wnt/Ca2 + pathway and the Wnt/planar cell polarity pathway. We investigated the involvement of the Wnt canonical and non-canonical pathways in human articular chondrocyte de-differentiation in vitro. Human articular chondrocytes were cultured through four passages with no treatment, or with sFRP3 treatment, an inhibitor of Wnt pathways, or with DKK1 treatment, an inhibitor of the canonical pathway. Chondrocyte-secreted markers and Wnt pathway components were analyzed using western blotting and qPCR. Inhibition of the Wnt pathway showed that the canonical Wnt signaling probably is responsible for inhibition of collagen II expression, activation of metalloproteinase 13 expression and regulation of Wnt7a and c-jun expression during chondrocyte de-differentiation in vitro. Our results also suggest that expressions of eNOS, Wnt5a and cyclinE1 are regulated by non-canonical Wnt signaling.  相似文献   

18.
This study is carried out to investigate the role of microRNA-26a (miR-26a) in cartilage injury and chondrocyte proliferation and apoptosis in rats with rheumatoid arthritis (RA) by regulating expression of CTGF. A rat model of RA induced by type II collagen was established. The rats were assigned into normal, RA, RA + mimics negative control (NC), and RA + miR-26a mimics groups, and the cells were classified into blank, mimics NC, and miR-26a mimics groups. The degree of secondary joint swelling and arthritis index, expression of miR-26a, pathological changes, proliferation and apoptosis of chondrocytes, and expression of CTGF, interleukin-1β (IL-1β), IL-6, tumor necrosis factor-α, Bax, and Bcl-2 were also determined through a series of experiments. The targeting relationship between miR-26a and CTGF was verified. Initially, downregulated miR-26a was found in cartilage tissues and inflammatory articular chondrocytes of RA rats. In addition, CTGF was determined as a direct target gene of miR-26a, and upregulation of miR-26a inhibited CTGF expression in cartilage tissues of RA rats. Furthermore, upregulation of miR-26a reduced swelling and inflammation of joints, inhibited cartilage damage, apoptosis of chondrocytes, inflammatory injury, promotes proliferation, and inhibited apoptosis of inflammatory articular chondrocytes, which may be correlated with the targeting inhibition of CTGF expression. Collectively, the results demonstrate that upregulating the expression of miR-26a could attenuate cartilage injury, stimulate the proliferation, and inhibit apoptosis of chondrocytes in RA rats.  相似文献   

19.
miR-382-3p has been reported to be upregulated in synovial membrane in knee osteoarthritis (OA). Nevertheless, its role in OA remains largely unknown. The aim of this study was to investigate the specific function and mechanisms of miR-382-3p in the course of OA. In this study, human OA chondrocytes were pretreated with interleukin-1β (IL-1β) at 5 ng/ml for 12 hr to stimulate inflammatory response and matrix metalloproteinases (MMPs) expression in chondrocytes. Meanwhile, miR-382-3p was downregulated in IL-1β-stimulated chondrocytes. In addition, we found that miR-382-3p directly interacts with connexin 43 (CX43) and attenuates the increase of cytochrome c oxidase polypeptide II, inducible nitric oxide synthase, and MMP-1/13 that is induced by IL-1β. Furthermore, our observations indicated that miR-382-3p inhibited the expression of Toll-like receptor 4 (TLR4), Myeloid differentiation primary response 88 (MyD88) and nuclear factor κB (NF-κB) in IL-1β-stimulated chondrocytes, while CX43 overexpression could partly reverse these decreases. In conclusion, miR-382-3p participated in OA may through the TLR4/MyD88/NF-κB signaling pathway by directly targeting CX43.  相似文献   

20.
Programmed cell death 4 (PDCD4) is a RNA-binding protein that acts as a tumor suppressor in many cancer types, including colorectal cancer (CRC). During CRC carcinogenesis, PDCD4 protein levels remarkably decrease, but the underlying molecular mechanism for decreased PDCD4 expression is not fully understood. In this study, we performed bioinformatics analysis to identify miRNAs that potentially target PDCD4. We demonstrated miR-181b as a direct regulator of PDCD4. We further showed that activation of IL6/STAT3 signaling pathway increased miR-181b expression and consequently resulted in downregulation of PDCD4 in CRC cells. In addition, we investigated the biological effects of PDCD4 inhibition by miR-181b both in vitro and in vivo and found that miR-181b could promote cell proliferation and migration and suppress apoptosis in CRC cells and accelerate tumor growth in xenograft mice, potentially through targeting PDCD4. Taken together, this study highlights an oncomiR role for miR-181b in regulating PDCD4 in CRC and suggests that miR-181b may be a novel molecular therapeutic target for CRC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号